Thrombotic thrombocytopenic purpura (TTP) is a life-threatening systemic illness of abrupt onset and unknown cause. Proteolysis of the blood-clotting protein von Willebrand factor (VWF) observed in normal plasma is decreased in TTP patients. However, the identity of the responsible protease and its role in the pathophysiology of TTP remain unknown. We performed genome-wide linkage analysis in four pedigrees of humans with congenital TTP and mapped the responsible genetic locus to chromosome 9q34. A predicted gene in the identified interval corresponds to a segment of a much larger transcript, identifying a new member of the ADAMTS family of zinc metalloproteinase genes (ADAMTS13). Analysis of patients' genomic DNA identified 12 mutations in the ADAMTS13 gene, accounting for 14 of the 15 disease alleles studied. We show that deficiency of ADAMTS13 is the molecular mechanism responsible for TTP, and suggest that physiologic proteolysis of VWF and/or other ADAMTS13 substrates is required for normal vascular homeostasis.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.
Sickle cell disease (SCD) is caused by a single point mutation in the human betaA globin gene that results in the formation of an abnormal hemoglobin [HbS (alpha2betaS2)]. We designed a betaA globin gene variant that prevents HbS polymerization and introduced it into a lentiviral vector we optimized for transfer to hematopoietic stem cells and gene expression in the adult red blood cell lineage. Long-term expression (up to 10 months) was achieved, without preselection, in all transplanted mice with erythroid-specific accumulation of the antisickling protein in up to 52% of total hemoglobin and 99% of circulating red blood cells. In two mouse SCD models, Berkeley and SAD, inhibition of red blood cell dehydration and sickling was achieved with correction of hematological parameters, splenomegaly, and prevention of the characteristic urine concentration defect.
Individuals with beta-thalassemia develop progressive systemic iron overload, resulting in high morbidity and mortality. These complications are caused by labile plasma iron, which is taken up by parenchymal cells in a dysregulated manner; in contrast, erythropoiesis depends on transferrin-bound iron uptake via the transferrin receptor. We hypothesized that the ineffective erythropoiesis and anemia observed in beta-thalassemia might be ameliorated by increasing the amount of circulating transferrin. We tested the ability of transferrin injections to modulate iron metabolism and erythropoiesis in Hbb(th1/th1) mice, an experimental model of beta-thalassemia. Injected transferrin reversed or markedly improved the thalassemia phenotype in these mice. Specifically, transferrin injections normalized labile plasma iron concentrations, increased hepcidin expression, normalized red blood cell survival and increased hemoglobin production; this treatment concomitantly decreased reticulocytosis, erythropoietin abundance and splenomegaly. These results indicate that transferrin is a limiting factor contributing to anemia in these mice and suggest that transferrin therapy might be beneficial in human beta-thalassemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.