Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims. We aim to use all available disk-resolved images of about forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods. We download and process all asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combine optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well.Results. We present shape models and volume for 41 asteroids. For 35 asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We clearly see a trend of lower bulk densities for primitive objects (C-complex) than for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. Moreover, we identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
[1] We report the observation of two stellar occultations by Titan on 14 November 2003, using stations in the Indian Ocean, southern Africa, Spain, and northern and southern Americas. These occultations probed altitudes between $550 and 250 km ($1 to 250 mbar) in Titan's upper stratosphere. The light curves reveal a sharp inversion layer near 515 ± 6 km altitude (1.5 mbar pressure level), where the temperature increases by 15 K in only 6 km. This layer is close to an inversion layer observed fourteen months later by the Huygens HASI instrument during the entry of the probe in Titan's atmosphere on 14 January 2005 [Fulchignoni et al., 2005]. Central flashes observed during the first occultation provide constraints on the zonal wind regime at 250 km, with a strong northern jet ($200 m s À1 ) around the latitude 55°N, wind velocities of $150 m s À1 near the equator, and progressively weaker winds as more southern latitudes are probed. The haze distribution around Titan's limb at 250 km altitude is close to that predicted by the Global Circulation Model of Rannou et al. (2004) in the southern hemisphere, but a clearing north of 40°N is necessary to explain our data. This contrasts with Rannou et al.'s (2004) model, which predicts a very thick polar hood over Titan's northern polar regions. Simultaneous observations of the flashes at various wavelengths provide a dependence of t / l Àq , with q = 1.8 ± 0.5 between 0.51 and 2.2 mm for the tangential optical depth of the hazes at 250 km altitude.
We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R equiv = 555±2.5 km and geometric visual albedo p V = 0.109±0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of = 0.087 +0.0268 −0.0175 , an equatorial radius of 569 +24 −17 km, and a density of 1.99 ± 0.46 g cm −3 . The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.
Authors Suppressed Due to Excessive Length characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.