We present xBD, a new, large-scale dataset for the advancement of change detection and building damage assessment for humanitarian assistance and disaster recovery research. Natural disaster response requires an accurate understanding of damaged buildings in an affected region. Current response strategies require in-person damage assessments within 24-48 hours of a disaster. Massive potential exists for using aerial imagery combined with computer vision algorithms to assess damage and reduce the potential danger to human life. In collaboration with multiple disaster response agencies, xBD provides pre-and post-event satellite imagery across a variety of disaster events with building polygons, ordinal labels of damage level, and corresponding satellite metadata. Furthermore, the dataset contains bounding boxes and labels for environmental factors such as fire, water, and smoke. xBD is the largest building damage assessment dataset to date, containing 850,736 building annotations across 45,362 km 2 of imagery.
Abstract-Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context.
Abstract. With the recent breakthrough success of machine learning based solutions for automatic image annotation, the availability of reference image annotations for algorithm training is one of the major bottlenecks in medical image segmentation and many other fields. Crowdsourcing has evolved as a valuable option for annotating large amounts of data while sparing the resources of experts, yet, segmentation of objects from scratch is relatively time-consuming and typically requires an initialization of the contour. The purpose of this paper is to investigate whether the concept of crowd-algorithm collaboration can be used to simultaneously (1) speed up crowd annotation and (2) improve algorithm performance based on the feedback of the crowd. Our contribution in this context is two-fold: Using benchmarking data from the MICCAI 2015 endoscopic vision challenge we show that atlas forests extended by a novel superpixel-based confidence measure are well-suited for medical instrument segmentation in laparoscopic video data. We further demonstrate that the new algorithm and the crowd can mutually benefit from each other in a collaborative annotation process. Our method can be adapted to various applications and thus holds high potential to be used for large-scale low-cost data annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.