The advent of transcription profiling technologies has provided researchers with an unprecedented ability to study biological processes. Accordingly, a custom-made Affymetrix GeneChip, constituting >86% of the Staphylococcus aureus genome, was used to identify open reading frames that are regulated by agr and/or SarA, the two best-studied regulators of the organism's virulence response. RNA extracted from wild-type cells and agr, sarA, and agr sarA mutant cells in the early-, mid-, and late-log and stationary phases of growth was analyzed. Open reading frames with transcription patterns expected of genes either up-or downregulated in an agrand/or SarA-dependent manner were identified. Oligonucleotide microarray and Northern blot analyses confirmed that the transcription of several known virulence genes, including hla (alpha-toxin) and spa (protein A), is regulated by each effector and provided insights about the regulatory cascades involved in both alpha-hemolysin and protein A expression. Several putative virulence factors were also identified as regulated by agr and/or SarA. In addition, genes that are involved in several biological processes but which are difficult to reconcile as playing a direct role in the organism's pathogenesis also appeared to be regulated by each effector, suggesting that products of both the agr and the sarA locus are more-global transcription regulators than previously realized.Staphylococcus aureus is a major cause of human disease. The organism causes a variety of clinical manifestations, ranging from localized skin infections to severe sepsis, and is a leading cause of hospital-acquired infection (3). Despite advances in antibacterial chemotherapy, S. aureus strains have demonstrated resistance to all currently available antibiotics. Due in part to the immense clinical importance of this organism, an enormous amount of effort has been directed toward identifying the genes and regulatory mechanisms associated with S. aureus pathogenesis. Collectively, this work has demonstrated that the organism's pathogenesis can be attributed to its capacity to produce a variety of virulence factors (29).The identification of virulence factors and the regulatory networks that influence their expression has been facilitated by the observation(s) that many, if not most, virulence genes are expressed in laboratory cultures. While there is currently a substantial list of staphylococcal virulence factors, it is likely that this list is incomplete and is skewed by the limitations of the experiments used to identify them. Virulence factors that have already been identified generally include (i) bacterial surface proteins that are involved in processes such as adhesion and evasion of the host immune response and (ii) secreted exoproteins that degrade host tissue(s) and inactivate host defensive mechanisms (29).The genes encoding most virulence factors belong to an extensive regulon that is coordinately regulated in response to a variety of intra-and extracellular signals (1,5,21). Octapeptide signaling m...
The Staphylococcus aureus Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by strains epidemiologically associated with the current outbreak of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and with the often-lethal necrotizing pneumonia. To investigate the role of PVL in pulmonary disease, we tested the pathogenicity of clinical isolates, isogenic PVL-negative and PVL-positive S. aureus strains, as well as purified PVL, in a mouse acute pneumonia model. Here we show that PVL is sufficient to cause pneumonia and that the expression of this leukotoxin induces global changes in transcriptional levels of genes encoding secreted and cell wall-anchored staphylococcal proteins, including the lung inflammatory factor staphylococcal protein A (Spa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.