SUMMARY
Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).
Highlights d 102 genes implicated in risk for autism spectrum disorder (ASD genes, FDR % 0.1) d Most are expressed and enriched early in excitatory and inhibitory neuronal lineages d Most affect synapses or regulate other genes; how these roles dovetail is unknown d Some ASD genes alter early development broadly, others appear more specific to ASD
Summary
Given prior evidence for the contribution of rare copy number variations (CNVs) to autism spectrum disorders (ASD), we studied these events in 4,457 individuals from 1,174 simplex families, composed of parents, a proband and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, featuring a highly social personality. We identify rare recurrent de novo CNVs at five additional regions including two novel ASD loci, 16p13.2 (including the genes USP7 and C16orf72) and Cadherin13, and implement a rigorous new approach to evaluating the statistical significance of these observations. Overall, we find large de novo CNVs carry substantial risk (OR=3.55; CI =2.16-7.46, p=6.9 × 10−6); estimate the presence of 130-234 distinct ASD-related CNV intervals across the genome; and, based on data from multiple studies, present compelling evidence for the association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.