A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.
Kappa opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse and alcoholism. To date, only one tracer, the kappa opioid receptor agonist [11C]GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist [11C]LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo.
METHODS
In vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabelled ligand in Sprague-Dawley rats, as well as wild-type and KOR knock-out mice, to assess the ligand’s potential as a tracer candidate. Imaging experiments with [11C]LY2795050 in monkeys were carried out on the Focus-220 PET scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis.
RESULTS
LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with LC/MS/MS identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. [11C]LY2795050 was prepared in an average yield of 12% and >99% radiochemical purity. In rhesus monkeys, [11C]LY2795050 displayed a moderate rate of peripheral metabolism, with ∼40% of parent compound remaining at 30 min postinjection. In the brain, [11C]LY2795050 displayed fast uptake kinetics (regional activity peak times < 20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, iv) resulted in a uniform distribution of radioactivity. Further, specific binding of [11C]LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner.
CONCLUSION
[11C]LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo, and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.
QPT-1 was discovered in a compound library by high-throughput screening and triage for substances with whole-cell antibacterial activity. This totally synthetic compound is an unusual barbituric acid derivative whose activity resides in the (؊)-enantiomer. QPT-1 had activity against a broad spectrum of pathogenic, antibioticresistant bacteria, was nontoxic to eukaryotic cells, and showed oral efficacy in a murine infection model, all before any medicinal chemistry optimization. Biochemical and genetic characterization showed that the QPT-1 targets the  subunit of bacterial type II topoisomerases via a mechanism of inhibition distinct from the mechanisms of fluoroquinolones and novobiocin. Given these attributes, this compound represents a promising new class of antibacterial agents. The success of this reverse genomics effort demonstrates the utility of exploring strategies that are alternatives to target-based screens in antibacterial drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.