Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host–microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.
Understanding transcriptome complexity is crucial for understanding human biology and disease. Technologies such as Synthetic long-read RNA sequencing (SLR-RNA-seq) delivered 5 million isoforms and allowed assessing splicing coordination. Pacific Biosciences and Oxford Nanopore increase throughput also but require high input amounts or amplification. Our new droplet-based method, sparse isoform sequencing (spISO-seq), sequences 100k-200k partitions of 10-200 molecules at a time, enabling analysis of 10-100 million RNA molecules. SpISO-seq requires less than 1 ng of input cDNA, limiting or removing the need for prior amplification with its associated biases. Adjusting the number of reads devoted to each molecule reduces sequencing lanes and cost, with little loss in detection power. The increased number of molecules expands our understanding of isoform complexity. In addition to confirming our previously published cases of splicing coordination (e.g., BIN1), the greater depth reveals many new cases, such as MAPT. Coordination of internal exons is found to be extensive among protein coding genes: 23.5%-59.3% (95% confidence interval) of highly expressed genes with distant alternative exons exhibit coordination, showcasing the need for long-read transcriptomics. However, coordination is less frequent for noncoding sequences, suggesting a larger role of splicing coordination in shaping proteins. Groups of genes with coordination are involved in protein-protein interactions with each other, raising the possibility that coordination facilitates complex formation and/or function. We also find new splicing coordination types, involving initial and terminal exons. Our results provide a more comprehensive understanding of the human transcriptome and a general, cost-effective method to analyze it.
One in ten people are affected by rare diseases, and three out of ten children with rare diseases will not live past age five. However, the small market size of individual rare diseases, combined with the time and capital requirements of pharmaceutical R&D, have hindered the development of new drugs for these cases. A promising alternative is drug repurposing, whereby existing FDA-approved drugs might be used to treat diseases different from their original indications. In order to generate drug repurposing hypotheses in a systematic and comprehensive fashion, it is essential to integrate information from across the literature of pharmacology, genetics, and pathology. To this end, we leverage a newly developed knowledge graph, the Global Network of Biomedical Relationships (GNBR). GNBR is a large, heterogeneous knowledge graph comprising drug, disease, and gene (or protein) entities linked by a small set of semantic themes derived from the abstracts of biomedical literature. We apply a knowledge graph embedding method that explicitly models the uncertainty associated with literature-derived relationships and uses link prediction to generate drug repurposing hypotheses. This approach achieves high performance on a gold-standard test set of known drug indications (AUROC = 0.89) and is capable of generating novel repurposing hypotheses, which we independently validate using external literature sources and protein interaction networks. Finally, we demonstrate the ability of our model to produce explanations of its predictions.
Exercise testing is routinely used in clinical practice to assess fitness - a strong predictor of survival - as well as causes of exercise limitations. While these studies often focus on cardiopulmonary response and selected molecular pathways, the dynamic system-wide molecular response to exercise has not been fully characterized. We performed a longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including transcriptome, immunome, proteome, metabolome and lipidome in 36 well-characterized volunteers before and after a controlled bout of acute exercise (2, 15, 30 min and 1 hour in recovery). Integrative analysis revealed an orchestrated choreography of biological processes across key tissues. Most of these processes were dampened in insulin resistant participants. Finally, we discovered biological pathways involved in exercise capacity and developed prediction models revealing potential resting blood-based biomarkers of fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.