Emotions are a critical aspect of human behavior. One widely used technique for research in emotion measurement is based on the use of EEG signals. In general terms, the first step of signal processing is the elimination of noise, which can be done in manual or automatic terms. The next step is determining the feature vector using, for example, entropy calculation and its variations to generate a classification model. It is possible to use this approach to classify theoretical models such as the Circumplex model. This model proposes that emotions are distributed in a two-dimensional circular space. However, methods to determine the feature vector are highly susceptible to noise that may exist in the signal. In this article, a new method to adjust the classifier is proposed using metaheuristics based on the black hole algorithm. The method is aimed at obtaining results similar to those obtained with manual noise elimination methods. In order to evaluate the proposed method, the MAHNOB HCI Tagging Database was used. Results show that using the black hole algorithm to optimize the feature vector of the Support Vector Machine we obtained an accuracy of 92.56% over 30 executions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.