The motion of electrons through quantum dots is strongly modified by single-electron charging and the quantization of energy levels. Much effort has been directed towards extending studies of electron transport to chemical nanostructures, including molecules, nanocrystals and nanotubes. Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. We perform transport measurements that provide evidence for a coupling between the centre-of-mass motion of the C60 molecules and single-electron hopping--a conduction mechanism that has not been observed previously in quantum dot studies. The coupling is manifest as quantized nano-mechanical oscillations of the C60 molecule against the gold surface, with a frequency of about 1.2 THz. This value is in good agreement with a simple theoretical estimate based on van der Waals and electrostatic interactions between C60 molecules and gold electrodes.
Two new soft X-ray scanning transmission microscopes located at the Advanced Light Source (ALS) have been designed, built and commissioned. Interferometer control implemented in both microscopes allows the precise measurement of the transverse position of the zone plate relative to the sample. Long-term positional stability and compensation for transverse displacement during translations of the zone plate have been achieved. The interferometer also provides low-distortion orthogonal x, y imaging. Two different control systems have been developed: a digital control system using standard VXI components at beamline 7.0, and a custom feedback system based on PC AT boards at beamline 5.3.2. Both microscopes are diffraction limited with the resolution set by the quality of the zone plates. Periodic features with 30 nm half period can be resolved with a zone plate that has a 40 nm outermost zone width. One microscope is operating at an undulator beamline (7.0), while the other is operating at a novel dedicated bending-magnet beamline (5.3.2), which is designed speci®cally to illuminate the microscope. The undulator beamline provides count rates of the order of tens of MHz at highenergy resolution with photon energies of up to about 1000 eV. Although the brightness of a bending-magnet source is about four orders of magnitude smaller than that of an undulator source, photon statistics limited operation with intensities in excess of 3 MHz has been achieved at high energy resolution and high spatial resolution. The design and performance of these microscopes are described.
We use electrostatic force microscopy and scanned gate microscopy to probe the conducting properties of carbon nanotubes at room temperature. Multiwalled carbon nanotubes are shown to be diffusive conductors, while metallic single-walled carbon nanotubes are ballistic conductors over micron lengths. Semiconducting single-walled carbon nanotubes are shown to have a series of large barriers to conduction along their length. These measurements are also used to probe the contact resistance and locate breaks in carbon nanotube circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.