Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
The complete nucleotide sequence of the genome of a symbiotic bacterium Mesorhizobium loti strain MAFF303099 was determined. The genome of M. loti consisted of a single chromosome (7,036,071 bp) and two plasmids, designated as pMLa (351,911 bp) and pMLb (208, 315 bp). The chromosome comprises 6752 potential protein-coding genes, two sets of rRNA genes and 50 tRNA genes representing 47 tRNA species. Fifty-four percent of the potential protein genes showed sequence similarity to genes of known function, 21% to hypothetical genes, and the remaining 25% had no apparent similarity to reported genes. A 611-kb DNA segment, a highly probable candidate of a symbiotic island, was identified, and 30 genes for nitrogen fixation and 24 genes for nodulation were assigned in this region. Codon usage analysis suggested that the symbiotic island as well as the plasmids originated and were transmitted from other genetic systems. The genomes of two plasmids, pMLa and pMLb, contained 320 and 209 potential protein-coding genes, respectively, for a variety of biological functions. These include genes for the ABC-transporter system, phosphate assimilation, two-component system, DNA replication and conjugation, but only one gene for nodulation was identified.
Legume root nodules originate from differentiated cortical cells that reenter the cell cycle and form organ primordia. We show that perception of the phytohormone cytokinin is a key element in this switch. Mutation of a Lotus japonicus cytokinin receptor gene leads to spontaneous development of root nodules in the absence of rhizobia or rhizobial signal molecules. The mutant histidine kinase receptor has cytokinin-independent activity and activates an Escherichia coli two-component phosphorelay system in vivo. Mutant analysis shows that cytokinin signaling is required for cell divisions that initiate nodule development and defines an autoregulated process where cytokinin induction of nodule stem cells is controlled by shoots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.