BackgroundSepsis is usually accompanied by changes of body temperature (Tb), but whether fever and hypothermia predict mortality equally or differently is not fully clarified. We aimed to find an association between Tb and mortality in septic patients with meta-analysis of clinical trials.MethodsWe searched the PubMed, EMBASE, and Cochrane Controlled Trials Registry databases (from inception to February 2016). Human studies reporting Tb and mortality of patients with sepsis were included in the analyses. Average Tb with SEM and mortality rate of septic patient groups were extracted by two authors independently.ResultsForty-two studies reported Tb and mortality ratios in septic patients (n = 10,834). Pearson correlation analysis revealed weak negative linear correlation (R2 = 0.2794) between Tb and mortality. With forest plot analysis, we found a 22.2% (CI, 19.2–25.5) mortality rate in septic patients with fever (Tb > 38.0°C), which was higher, 31.2% (CI, 25.7–37.3), in normothermic patients, and it was the highest, 47.3% (CI, 38.9–55.7), in hypothermic patients (Tb < 36.0°C). Meta-regression analysis showed strong negative linear correlation between Tb and mortality rate (regression coefficient: -0.4318; P < 0.001). Mean Tb of the patients was higher in the lowest mortality quartile than in the highest: 38.1°C (CI, 37.9–38.4) vs 37.1°C (CI, 36.7–37.4).ConclusionsDeep Tb shows negative correlation with the clinical outcome in sepsis. Fever predicts lower, while hypothermia higher mortality rates compared with normal Tb. Septic patients with the lowest (< 25%) chance of mortality have higher Tb than those with the highest chance (> 75%).
The potentially key role of visceral obesity in the association between perceived stress and dyslipidemia or diastolic blood pressure are discussed together with potential moderators (e.g. gender-differences, variations in stress assessment and metabolic syndrome criteria) that may explain the inconsistent, contradictory results of the individual studies.
BackgroundMetformin is the first-choice drug for patients with Type 2 diabetes, and this therapy is characterized by being weight neutral. However, in the elderly an additional unintentional weight loss could be considered as an adverse effect of the treatment.ObjectivesWe aimed to perform a meta-analysis of placebo-controlled studies investigating the body weight changes upon metformin treatment in participants older than 60 years.Materials and methodsPubMed, EMBASE and the Cochrane Library were searched. We included at least 12 week-long studies with placebo control where the mean age of the metformin-treated patients was 60 years or older and the body weight changes of the patients were reported. We registered our protocol on PROSPERO (CRD42017055287).ResultsFrom the 971 articles identified by the search, 6 randomized placebo-controlled studies (RCTs) were included in the meta-analysis (n = 1541 participants). A raw difference of -2.23 kg (95% CI: -2.84 –-1.62 kg) body weight change was detected in the metformin-treated groups as compared with that of the placebo groups (p<0.001). Both total cholesterol (-0.184 mmol/L, p<0.001) and LDL cholesterol levels (-0.182 mmol/L, p<0.001) decreased upon metformin-treatment.ConclusionsOur meta-analysis of RCTs showed a small reduction of body weight together with slight improvement of the blood lipid profile in patients over 60 years. With regard to the risk of unintentional weight loss, metformin seems to be a safe agent in the population of over 60 years. Our results also suggest that metformin treatment may reduce the risk of major coronary events (-4-5%) and all-cause mortality (-2%) in elderly diabetic populations.
Consumption of capsaicin or its nonpungent analogues, capsinoids has been reported to affect energy expenditure and fat oxidation, although available data are still controversial. The aim of the present study was to conduct a meta-analysis regarding the effects of these substances on energy expenditure and respiratory quotient, with special emphasis on the role of body mass index (BMI) of the participants. Medical databases were systematically searched for papers. Of the 627 trials identified, 9 provided results suitable to be included in analysis. Data analysis showed that after ingestion of capsaicin or capsinoids the energy expenditure increased (245 kJ/day, 58.56 kcal/day, p = 0.030) and the respiratory quotient decreased (by 0.216; p = 0.031) indicating a rise in fat oxidation. Studies with mean BMI of the participants below 25 kg/m failed to report any effect of capsaicin or capsinoids on the energy expenditure (p = 0.718) or on the respiratory quotient (p = 0.444), but studies with mean BMI exceeding 25 kg/m demonstrated an increase in energy expenditure (292 kJ/day, 69.79 kcal/day, p = 0.023) and a marked decrease in respiratory quotient (-0.257, p = 0.036). Our data clearly suggest that capsaicin or capsiate could be a new therapeutic approach in obesity promoting a negative energy balance and increased fat oxidation.
Non-technical summary Systemic inflammation and related disorders, including sepsis, are leading causes of death in hospitalized patients. In most severe cases, systemic inflammation is accompanied by a drop in body temperature (hypothermia). We know that inflammation-associated hypothermia is a brain-mediated response, but mechanisms of this response are unknown. We administered a bacterial product (endotoxin) to rats to cause systemic inflammation and hypothermia. We then used a variety of pharmacological tools to probe whether three different receptors are involved in this hypothermia. We have found that one of the receptors studied, the so-called cannabinoid-1 (CB1) receptor, is crucial for the development of hypothermia. This is the same receptor that is responsible for many effects of marihuana (cannabis). We further show that hypothermia associated with inflammation depends on CB1 receptors located inside the brain. These novel findings suggest that brain CB1 receptors should be studied as potential therapeutic targets in systemic inflammation and sepsis.Abstract Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide (AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22• C, a moderate dose of LPS (25-100 μg kg −1 I.V.) induced a fall in body temperature with a nadir at ∼100 min postinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg −1 I.P.), by systemic TRPV1 antagonism with capsazepine (40 mg kg −1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kgHowever, CB1 receptor antagonism by rimonabant (4.6 mg kg −1 I.P.) or SLV319 (15 mg kgblocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant, the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEA did not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermoeffector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.