The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol‐dependent growth, estradiol treatment of human mammary cancer MCF‐7 cells triggers rapid and transient activation of the mitogen‐activated (MAP) kinases, erk‐1 and erk‐2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras‐GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP‐kinase pathway in MCF‐7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild‐type 67 kDa estradiol receptor cDNA that Cos cells become estradiol‐responsive in terms of erk‐2 activity. This finding, together with the inhibition by the pure anti‐estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF‐7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c‐src show that the estradiol receptor activates c‐src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c‐src is an initial and integral part of the signaling events mediated by the estradiol receptor.
Estrogen effects on mammary epithelial and breast cancer (BC) cells are mediated by the nuclear receptors ERa and ERb, transcription factors that display functional antagonism with each other, with ERb acting as oncosuppressor and interfering with the effects of ERa on cell proliferation, tumor promotion and progression. Indeed, hormone-responsive, ERa þ BC cells often lack ERb, which when present associates with a less aggressive clinical phenotype of the disease. Recent evidences point to a significant role of microRNAs (miRNAs) in BC, where specific miRNA expression profiles associate with distinct clinical and biological phenotypes of the lesion. Considering the possibility that ERb might influence BC cell behavior via miRNAs, we compared miRNome expression in ERb þ vs ERbÀ hormone-responsive BC cells and found a widespread effect of this ER subtype on the expression pattern of these non-coding RNAs. More importantly, the expression pattern of 67 miRNAs, including 10 regulated by ERb in BC cells, clearly distinguishes ERb þ , node-negative, from ERbÀ, metastatic, mammary tumors. Molecular dissection of miRNA biogenesis revealed multiple mechanisms for direct regulation of this process by ERb þ in BC cell nuclei. In particular, ERb downregulates miR-30a by binding to two specific sites proximal to the gene and thereby inhibiting pri-miR synthesis. On the other hand, the receptor promotes miR-23b, -27b and 24-1 accumulation in the cell by binding in close proximity of the corresponding gene cluster and preventing in situ the inhibitory effects of ERa on pri-miR maturation by the p68/DDX5-Drosha microprocessor complex. These results indicate that cell autonomous regulation of miRNA expression is part of the mechanism of action of ERb in BC cells and could contribute to establishment or maintenance of a less aggressive tumor phenotype mediated by this nuclear receptor.
Microarray-based gene expression profiling is well suited for parallel quantitative analysis of large numbers of RNAs, but its application to cancer biopsies, particularly formalin-fixed, paraffin-embedded (FFPE) archived tissues, is limited by the poor quality of the RNA recovered. This represents a serious drawback, as FFPE tumor tissue banks are available with clinical and prognostic annotations, which could be exploited for molecular profiling studies, provided that reliable analytical technologies are found. We applied and evaluated here a microarray-based cDNA-mediated annealing, selection, extension and ligation (DASL) assay for analysis of 502 mRNAs in highly degraded total RNA extracted from cultured cells or FFPE breast cancer (MT) biopsies. The study included quantitative and qualitative comparison of data obtained by analysis of the same RNAs with genome-wide oligonucleotide microarrays vs DASL arrays and, by DASL, before and after extensive in vitro RNA fragmentation. The DASL-based expression profiling assay applied to RNA extracted from MCF-7 cells, before or after 24 h stimulation with a mitogenic dose of 17b-estradiol, consistently allowed to detect hormone-induced gene expression changes following extensive RNA degradation in vitro. Comparable results where obtained with tumor RNA extracted from FFPE MT biopsies (6 to 19 years old). The method proved itself sensitive, reproducible and accurate, when compared to results obtained by microarray analysis of RNA extracted from snap-frozen tissue of the same tumor.
Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.