Purpose: Diffuse gliomas are the most common primary tumor of the brain and include different subtypes with diverse prognosis. The genomic characterization of diffuse gliomas facilitates their molecular diagnosis. The anatomical localization of diffuse gliomas complicates access to tumor specimens for diagnosis, in some cases incurring high-risk surgical procedures and stereotactic biopsies. Recently, cell-free circulating tumor DNA (ctDNA) has been identified in the cerebrospinal fluid (CSF) of patients with brain malignancies. Experimental Design: We performed an analysis of IDH1, IDH2, TP53, TERT, ATRX, H3F3A, and HIST1H3B gene mutations in two tumor cohorts from The Cancer Genome Atlas (TCGA) including 648 diffuse gliomas. We also performed targeted exome sequencing and droplet digital PCR (ddPCR) analysis of these seven genes in 20 clinical tumor specimens and CSF from glioma patients and performed a histopathologic characterization of the tumors. Results: Analysis of the mutational status of the IDH1, IDH2, TP53, TERT, ATRX, H3F3A, and HIST1H3B genes allowed the classification of 79% of the 648 diffuse gliomas analyzed, into IDH-wild-type glioblastoma, IDH-mutant glioblastoma/diffuse astrocytoma and oligodendroglioma, each subtype exhibiting diverse median overall survival (1.1, 6.7, and 11.2 years, respectively). We developed a sequencing platform to simultaneously and rapidly genotype these seven genes in CSF ctDNA allowing the subclassification of diffuse gliomas. Conclusions: The genomic analysis of IDH1, IDH2, TP53, ATRX, TERT, H3F3A, and HIST1H3B gene mutations in CSF ctDNA facilitates the diagnosis of diffuse gliomas in a timely manner to support the surgical and clinical management of these patients. Clin Cancer Res; 24(12); 2812–9. ©2018 AACR.
Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.
Post-traumatic brain contusions (PTBCs) are traditionally considered primary injuries and can increase in size, generate perilesional edema, cause mass effect, induce neurological deterioration, and cause death. Most patients experience a progressive increase in pericontusional edema, and nearly half, an increase in the hemorrhagic component itself. The underlying molecular pathophysiology of contusion-induced brain edema and hemorrhagic progression remains poorly understood. The aim of this study was to investigate sulfonylurea 1/transient receptor potential melastatin 4 (SUR1-TRPM4) ion channel SUR1 expression in various cell types (neurons, astrocytes, endothelial cells, microglia, macrophages, and neutrophils) of human brain contusions and whether SUR1 up-regulation was related to time postinjury. Double immunolabeling of SUR1 and cell-type-specific proteins was performed in 26 specimens from traumatic brain injury patients whose lesions were surgically evacuated. Three samples from limited brain resections performed for accessing extra-axial skull-base tumors or intraventricular lesions were controls. We found SUR1 was significantly overexpresed in all cell types and was especially prominent in neurons and endothelial cells (ECs). The temporal pattern depended on cell type: 1) In neurons, SUR1 increased within 48 h of injury and stabilized thereafter; 2) in ECs, there was no trend; 3) in glial cells and microglia/macrophages, a moderate increase was observed over time; and 4) in neutrophils, it decreased with time. Our results suggest that up-regulation of SUR1 in humans point to this channel as one of the important molecular players in the pathophysiology of PTBCs. Our findings reveal opportunities to act therapeutically on the mechanisms of growth of traumatic contusions and therefore reduce the number of patients with neurological deterioration and poor neurological outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.