Evolution involves interplay between natural selection and developmental constraints. This is seen, for example, when digits are lost from the limbs during evolution. Extant archosaurs (crocodiles and birds) show several instances of digit loss under different selective regimes, and show limbs with one, two, three, four or the ancestral number of five digits. The 'lost' digits sometimes persist for millions of years as developmental vestiges. Here we examine digit loss in the Nile crocodile and five birds, using markers of three successive stages of digit development. In two independent lineages under different selection, wing digit I and all its markers disappear. In contrast, hindlimb digit V persists in all species sampled, both as cartilage, and as Sox9- expressing precartilage domains, 250 million years after the adult digit disappeared. There is therefore a mismatch between evolution of the embryonic and adult phenotypes. All limbs, regardless of digit number, showed similar expression of sonic hedgehog (Shh). Even in the one-fingered emu wing, expression of posterior genes Hoxd11 and Hoxd12 was conserved, whereas expression of anterior genes Gli3 and Alx4 was not. We suggest that the persistence of digit V in the embryo may reflect constraints, particularly the conserved posterior gene networks associated with the zone of polarizing activity (ZPA). The more rapid and complete disappearance of digit I may reflect its ZPA-independent specification, and hence, weaker developmental constraints. Interacting with these constraints are selection pressures for limb functions such as flying and perching. This model may help to explain the diverse patterns of digit loss in tetrapods. Our study may also help to understand how selection on adults leads to changes in development.
We present information on primary type specimens for 13,282 species and subspecies of reptiles compiled in the Reptile Database, that is, holotypes, neotypes, lectotypes, and syntypes. These represent 99.4% of all 13,361 currently recognized taxa (11,050 species and 2311 subspecies). Type specimens of 653 taxa (4.9%) are either lost or not located, were never designated, or we did not find any information about them. 51 species are based on iconotypes. To map all types to physical collections we have consolidated all synonymous and ambiguous collection acronyms into an unambiguous list of 364 collections holding these primary types. The 10 largest collections possess more than 50% of all (primary) reptile types, the 36 largest collections possess more than 10,000 types and the largest 73 collections possess over 90% of all types. Of the 364 collections, 107 hold type specimens of only 1 species or subspecies. Dozens of types are still in private collections. In order to increase their utility, we recommend that the description of type specimens be supplemented with data from high-resolution images and CT-scans, and clear links to tissue samples and DNA sequence data (when available). We request members of the herpetological community provide us with any missing type information to complete the list.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.