Downregulated Skin Biomarkers Upregulated Crisaborole Vehicle Crisaborole Day 15 Day 8 Day 1 Day 15 Day 8 Day 1 Vehicle Day 1 NL CRISABOROLE AND ATOPIC DERMATITIS SKIN BIOMARKERS: AN INTRAPATIENT RANDOMIZED TRIAL 2 AD lesions of identical severity were randomized intrapatient to crisaborole or vehicle and biopsied at days 1, 8, and 15 (including Th2 and Th17/Th22 axes) and improved barrier function NL skin biopsied at day 1 AD, atopic dermatitis; NL, nonlesional; Th, helper T cellBackground: Crisaborole ointment 2% is a nonsteroidal phosphodiesterase 4 inhibitor for the treatment of mild-tomoderate atopic dermatitis (AD). The mechanism of action of crisaborole and its effects on lesional measures of disease severity are not yet well defined. Objective: This phase 2a, single-center, vehicle-controlled, intrapatient study was designed to further characterize the mechanism of action of crisaborole through evaluation of clinical efficacy and changes in skin biomarkers in adults (n 5 40) with mild-to-moderate AD. Methods: Two target lesions were randomized in an intrapatient (1:1) manner to double-blind crisaborole/vehicle applied twice daily for 14 days. Patients then applied crisaborole (open-label) to all affected areas for 28 days. Punch biopsy specimens were collected for biomarker analysis at baseline, day 8 (optional), and day 15.
Many psoriasis patients treated with biologics do not achieve total skin clearance. These patients possess residual plaques despite ongoing biologic treatment. To elucidate mechanisms of plaque persistence despite overall good drug response, we studied 50 subjects: psoriasis patients with residual plaques treated with one of three different biologics, untreated patients, and healthy controls. Skin biopsies from all subjects were characterized using three methods: mRNA expression, histology, and FACS of hematopoietic skin cells. Although all three methods provided evidence of drug effect, gene expression analysis revealed the persistence of key psoriasis pathways in treated plaques, including granulocyte adhesion and diapedesis, T helper type17 activation pathway, and interferon signaling with no novel pathways emerging. Focal decreases in parakeratosis and keratinocyte proliferation and differential reduction in IL-17 producing CD103 e T cells, but no change in CD103 þ tissue-resident memory T cells were observed. Of note, antitumor necrosis factor increased the interferon signaling pathway already present. Interestingly mast cells were the dominant source of IL-22 in all psoriasis subjects. These data suggest that while subtle differences can be observed in drug-treated plaques, underlying biologic mechanisms are similar to those present in untreated psoriatic lesions.
Background: Treatment of inflammatory skin diseases, including atopic dermatitis (AD) and psoriasis, is undergoing transformative changes, highlighting the need to develop experimental models of skin inflammation in humans to predict treatment responses. Methods:We topically or intradermally administered four common sensitizers (dust mite (DM), diphencyprone (DPCP), nickel (Ni), and purified protein derivative (PPD)) to the backs of 40 healthy patients and the skin hypersensitivity response was biopsied and evaluated using immunohistochemistry, RNA-seq, and RT-PCR.Results: All agents induced strong increases in cellular infiltrates (T-cells and dendritic cells) as compared to untreated skin (p < .05), with variable T helper polarization.Overall, DPCP induced the strongest immune responses across all pathways, including innate immunity (IL-1α, IL-8), Th1 (IFNγ, CXCL10), Th2 (IL-5, CCL11), and Th17 (CAMP/LL37) products, as well as the highest regulatory tone (FOXP3, IL-34, IL-37) (FDR <0.01). Nickel induced Th17 (IL-17A), Th1 (CXCL10) and Th2 (IL-4R) immune responses to a lesser extent than DPCP (p < .05). PPD induced predominantly Th1 (IFNγ, CXCL10, STAT1) and Th17 inflammation (IL-17A) (p < .05). DM induced modulation of Th2 (IL-13, CCL17, CCL18), Th22 (IL-22), and Th17/Th22 (S100A7/9/12) pathways (p < .05). Barrier defects that characterize both AD and psoriasis were best modeled by DPCP and Ni, followed by PPD, including downregulation of terminal differentiation (FLG, FLG2, LOR, LCEs), tight junction (CLDN1/CLDN8), and lipid metabolism (FA2H, FABP7)-related markers. Conclusion:Our data imply that DPCP induced the strongest immune response across all pathways, and barrier defects characteristic of AD and psoriasis.
Background: In atopic dermatitis (AD), some studies have shown an association with increased cardiovascular disease in certain populations. However, other investigations found modest or no association. Despite conflicting results, molecular profiling studies in both AD skin and blood have demonstrated upregulation of atherosclerosis and cardiovascular risk-related markers. However, the underlying mechanisms connecting AD to vascular inflammation/atherosclerosis are unknown. In this study, we aim to determine factors associated with vascular inflammation/atherosclerosis in AD patients. Methods:We used 18-FDG PET-CT to characterize vascular inflammation in AD patients and healthy subjects. In parallel, we assessed their skin and blood immune profiles to determine AD-related immune biomarkers associated with vascular inflammation. We also assessed levels of circulating microparticles, which are known to be associated with increased cardiovascular risk. Results:We found significant correlations between vascular inflammation and Th2related products in skin and blood of AD patients as well as atherosclerosis-related markers that were modulated by dupilumab. Circulating levels of endothelial microparticles were significantly higher in severe AD patients and tended to correlate with vascular inflammation assessed by PET-CT. Conclusion:Vascular inflammation in AD is associated with enhanced Th2 response and clinical severity, which may explain cardiovascular comorbidities observed in select AD populations. Larger prospective studies are needed to further evaluate vascular inflammation and cardiovascular events and mortality in AD patients. Finally, as dupilumab treatment demonstrated significant modulation of atherosclerosis-related Research Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.