This work presents a methodology for obtaining quantitative oxygen concentration images in the tumor-bearing legs of living C3H mice. The method uses high-resolution electron paramagnetic resonance imaging (EPRI). Enabling aspects of the methodology include the use of injectable, narrow, single-line triaryl methyl spin probes and an accurate model of overmodulated spectra. Both of these increase the signal-to-noise ratio (SNR), resulting in high resolution in space (1 mm) 3 and oxygen concentrations (ϳ3 torr). Thresholding at 15% the maximum spectral amplitude gives leg/tumor shapes that reproduce those in photographs. The EPRI appears to give reasonable oxygen partial pressures, showing hypoxia (ϳ0 -6 torr, 0 -10 3 Pa) in many of the tumor voxels. EPRI was able to detect statistically significant changes in oxygen concentrations in the tumor with administration of carbogen, although the changes were not in- The central role of oxygen in virtually all life processes as the ultimate oxidative substrate for metabolism is well known (1). Oxygenation has a crucial effect on the malignant state (2). Lack of oxygen in a tissue (hypoxia) appears to predispose its surviving cells to mutagenesis, thereby increasing the likelihood that a malignant state will develop (3). Hypoxia affects, most often detrimentally, treatment with conventional anticancer therapies (4). In particular, radiation has been known for nearly a century to be potentiated by oxygen and inhibited by hypoxia (5).Electron paramagnetic resonance imaging (EPRI) can provide a quantitative image of the oxygen concentrations in tissues and tumors of living animals (6,7). The image derives from the EPR spectrum of the unpaired electron from a stable injected spin probe. Oxygen is measured in the distributional compartment of the spin probe. The EPR linewidth is a direct measure of the frequency with which the spin probe encounters molecular oxygen, and is directly proportional to the oxygen concentration (8). One great advantage to imaging the EPR linewidth (and not the line height) is the desensitization to other aspects of the animal or tissue physiology, such as the vasculature. The spectral line height (but not the linewidth) depends on the effectiveness of the delivery of the spin probe to a voxel. Within broad limits, the line height depends on the operating conditions of the imager and the complicated RF distributions in an animal, whereas the linewidth does not.The approach described herein differs from that taken by other groups pursuing in vivo EPRI. Spectral-spatial imaging and in vivo spectral-spatial imaging have been described previously (9,10). In vivo spectral-spatial EPRI for small animals has also been discussed by us and other researchers (6,(11)(12)(13)(14)(15). The present work takes spectralspatial imaging to its logical conclusion: obtaining a full spectrum from each voxel and fitting that spectrum to an accurate spectral shape function with adjustable spectral parameters. These spectral parameters contain the physiologic information fr...
We have measured the oxygen concentration in the body water of murine FSa and NFSa fibrosarcomas using a new method for quantitative oxygen concentration determination deep in the tissues of a living animal. The measurement uses unusually low-frequency electron paramagnetic spectroscopy sensitive to substrate 7 cm deep in tissue, partially deuterated spin probes (spin labels of molecular mass 195, approximating that of glucose) whose distribution compartment can be targeted with facile adduct substitution, and novel analytic techniques. We show that the water-compartment oxygen concentration of the tumors decreases as the tumor size increases and also shows a trend to decrease as radiobiologic hypoxia increases. An oxymetric spectral image of the tumor is presented. The technique will improve with larger human tissue samples. It provides the potential to quantitatively assess tissue hypoxia in ischemic or preischemic states in stroke and myocardial infarction. It will allow direct assessment of tumor hypoxia to determine the usefulness of radiation and chemotherapy adjuvants directed to hypoxic cell compartments.
Tumor oxygenation predicts cancer therapy response and malignant phenotype. This has spawned a number of oxymetries. Comparison of different oxymetries is crucial for the validation and understanding of these techniques. Electron paramagnetic resonance (EPR) imaging is a novel technique for providing quantitative high-resolution images of tumor and tissue oxygenation. This work compares sequences of tumor pO 2 values from EPR oxygen images with sequences of oxygen measurements made along a track with an Oxylite oxygen probe. Four-dimensional (three spatial and one spectral) EPR oxygen images used spectroscopic imaging techniques to measure the width of a spectral line in each image voxel from a trityl spin probe (OX063, Amersham Health R&D) in the tissues and tumor of mice after spin probe injection. A simple calibration allows direct, quantitative translation of each line width to an oxygen concentration. These four-dimensional EPR images, obtained in 45 minutes from FSa fibrosarcomas grown in the legs of C3H mice, have a spatial resolution of f1mm and oxygen resolution of f3 Torr. The position of the Oxylite track was measured within a 2-mm accuracy using a custom stereotactic positioning device. A total of nine images that involve 17 tracks were obtained. Of these, most showed good correlation between the Oxylite measured pO 2 and a track located in the tumor within the uncertainties of the Oxylite localizability. The correlation was good both in terms of spatial distribution pattern and pO 2 magnitude. The strong correlation of the two modalities corroborates EPR imaging as a useful tool for the study of tumor oxygenation.
Flavonoids within Scutellaria baicalensis may be potent antioxidants on the basis of our studies of S. baicalensis extract. To further this work, we studied the antioxidative effects of baicalein, a flavonoid component of S. baicalensis, in a chick cardiomyocyte model of reactive oxygen species (ROS) generation during hypoxia, simulated ischemia-reperfusion, or mitochondrial complex III inhibition with antimycin A. Oxidant stress was measured by oxidation of the intracellular probes 2Ј,7Ј-dichlorofluorescin diacetate and dihydroethidium. Viability was assessed by propidium iodide uptake. Baicalein attenuated oxidant stress during all conditions studied and acted within minutes of treatment. For example, baicalein given only at reperfusion dose dependently attenuated the ROS burst at 5 min after 1 h of simulated ischemia. It also decreased subsequent cell death at 3 h of reperfusion from 52.3 Ϯ 2.5% in untreated cells to 29.4 Ϯ 3.0% (with return of contractions; P Ͻ 0.001). In vitro studies using electron paramagnetic resonance spectroscopy with the spin trap 5-methoxycarbonyl-5-methyl-1-pyrroline-N-oxide revealed that baicalein scavenges superoxide but does not mimic the effects of superoxide dismutase. We conclude that baicalein can scavenge ROS generation in cardiomyocytes and that it protects against cell death in an ischemia-reperfusion model when given only at reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.