Converging lines of evidence implicate the beta-amyloid peptide (Ab) as causative in Alzheimer's disease. We describe a novel class of compounds that reduce Ab production by functionally inhibiting g-secretase, the activity responsible for the carboxy-terminal cleavage required for Ab production. These molecules are active in both 293 HEK cells and neuronal cultures, and exert their effect upon Ab production without affecting protein secretion, most notably in the secreted forms of the amyloid precursor protein (APP). Oral administration of one of these compounds, N-[N-(3,5-di¯uoro-phenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, to mice transgenic for human APP V717F reduces brain levels of Ab in a dose-dependent manner within 3 h. These studies represent the ®rst demonstration of a reduction of brain Ab in vivo. Development of such novel functional g-secretase inhibitors will enable a clinical examination of the Ab hypothesis that Ab peptide drives the neuropathology observed in Alzheimer's disease.
We describe the development of statine-based peptidomimetic inhibitors of human beta-secretase (BACE). The conversion of the peptide inhibitor 1 into cell-permeable peptidomimetic inhibitors of BACE was achieved through an iterative strategy of conceptually subdividing 1 into three regions: an N-terminal portion, a central statine-containing core, and a C-terminus. Replacement of the amino acid residues of 1 with moieties with less peptidic character was done with retention of BACE enzyme inhibitory activity. This approach led to the identification of the cell-permeable BACE inhibitor 38 that demonstrated BACE-mechanism-selective inhibition of Abeta secretion in human embryonic kidney cells.
The hydroxyethylene (HE) transition state isostere was developed as a scaffold to provide potent, small molecule inhibitors of human beta-secretase (BACE). The previous work on the statine series proved critical to the discovery of HE structure-activity relationships. Compound 20 with the N-terminal isophthalamide proved to be the most potent HE inhibitor (IC(50) = 30 nM) toward BACE. Unlike the statine series, we identified HE inhibitors without carboxylic acids on the C terminus, leading to enhanced cell penetration and making them attractive candidates for further drug development in Alzheimer's disease.
By use of the effectively cleaved beta-secretase (BACE) substrate (1), incorporation of a statine in P(1) resulted in a weak inhibitor 13 of the enzyme. Further substitution of P(1)'-Asp by P(1)'-Val in 13 results in a potent inhibitor 22 of BACE. Removal of the P(10)-P(5) residues on the N-terminal part of inhibitor 22 resulted in no loss of potency (23). C-terminal truncations of inhibitor 22 generally led to significant loss of potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.