BackgroundThe gut is the most extensively studied niche of the human microbiome. The aim of this study was to characterise the initial gut microbiota development of a cohort of breastfed infants (n = 192) from 1 to 24 weeks of age.MethodsV4-V5 region 16S rRNA amplicon Illumina sequencing and, in parallel, bacteriological culture. The metabolomic profile of infant urine at 4 weeks of age was also examined by LC-MS.ResultsFull-term (FT), spontaneous vaginally delivered (SVD) infants’ microbiota remained stable at both phylum and genus levels during the 24-week period examined. FT Caesarean section (CS) infants displayed an increased faecal abundance of Firmicutes (p < 0.01) and lower abundance of Actinobacteria (p < 0.001) after the first week of life compared to FT-SVD infants. FT-CS infants gradually progressed to harbouring a microbiota closely resembling FT-SVD (which remained stable) by week 8 of life, which was maintained at week 24. The gut microbiota of preterm (PT) infants displayed a significantly greater abundance of Proteobacteria compared to FT infants (p < 0.001) at week 1.Metabolomic analysis of urine at week 4 indicated PT-CS infants have a functionally different metabolite profile than FT (both CS and SVD) infants. Co-inertia analysis showed co-variation between the urine metabolome and the faecal microbiota of the infants. Tryptophan and tyrosine metabolic pathways, as well as fatty acid and bile acid metabolism, were found to be affected by delivery mode and gestational age.ConclusionsThese findings confirm that mode of delivery and gestational age both have significant effects on early neonatal microbiota composition. There is also a significant difference between the metabolite profile of FT and PT infants. Prolonged breastfeeding was shown to have a significant effect on the microbiota composition of FT-CS infants at 24 weeks of age, but interestingly not on that of FT-SVD infants. Twins had more similar microbiota to one another than between two random infants, reflecting the influence of similarities in both host genetics and the environment on the microbiota.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0213-y) contains supplementary material, which is available to authorized users.
fThe infant gut microbiota undergoes dramatic changes during the first 2 years of life. The acquisition and development of this population can be influenced by numerous factors, and antibiotic treatment has been suggested as one of the most significant. Despite this, however, there have been relatively few studies which have investigated the short-term recovery of the infant gut microbiota following antibiotic treatment. The aim of this study was to use high-throughput sequencing (employing both 16S rRNA and rpoB-specific primers) and quantitative PCR to compare the gut microbiota of nine infants who underwent parenteral antibiotic treatment with ampicillin and gentamicin (within 48 h of birth), 4 and 8 weeks after the conclusion of treatment, relative to that of nine matched healthy controls. The investigation revealed that the gut microbiota of the antibiotic-treated infants had significantly higher proportions of Proteobacteria (P ؍ 0.0049) and significantly lower proportions of Actinobacteria (P ؍ 0.00001) (and the associated genus Bifidobacterium [P ؍ 0.0132]) as well as the genus Lactobacillus (P ؍ 0.0182) than the untreated controls 4 weeks after the cessation of treatment. By week 8, the Proteobacteria levels remained significantly higher in the treated infants (P ؍ 0.0049), but the Actinobacteria, Bifidobacterium, and Lactobacillus levels had recovered and were similar to those in the control samples. Despite this recovery of total Bifidobacterium numbers, rpoB-targeted pyrosequencing revealed that the number of different Bifidobacterium species present in the antibiotic-treated infants was reduced. It is thus apparent that the combined use of ampicillin and gentamicin in early life can have significant effects on the evolution of the infant gut microbiota, the long-term health implications of which remain unknown.
Human milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.