Despite highly promising characteristics of three-dimensionally (3D) nanostructured catalysts for the oxygen evolution reaction (OER) in polymer electrolyte membrane water electrolyzers (PEMWEs), universal design rules for maximizing their performance have not been explored. Here we show that woodpile (WP)-structured Ir, consisting of 3D-printed, highly-ordered Ir nanowire building blocks, improve OER mass activity markedly. The WP structure secures the electrochemically active surface area (ECSA) through enhanced utilization efficiency of the extended surface area of 3D WP catalysts. Moreover, systematic control of the 3D geometry combined with theoretical calculations and various electrochemical analyses reveals that facile transport of evolved O2 gas bubbles is an important contributor to the improved ECSA-specific activity. The 3D nanostructuring-based improvement of ECSA and ECSA-specific activity enables our well-controlled geometry to afford a 30-fold higher mass activity of the OER catalyst when used in a single-cell PEMWE than conventional nanoparticle-based catalysts.
Achieving high emission efficiency in solidstate quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly-(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Forster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.
Practical sensing applications such as real‐time safety alerts and clinical diagnoses require sensor devices to differentiate between various target molecules with high sensitivity and selectivity, yet conventional devices such as oxide‐based chemo‐resistive sensors and metal‐based surface‐enhanced Raman spectroscopy (SERS) sensors usually do not satisfy such requirements. Here, a label‐free, chemo‐resistive/SERS multimodal sensor based on a systematically assembled 3D cross‐point multifunctional nanoarchitecture (3D‐CMA), which has unusually strong enhancements in both “chemo‐resistive” and “SERS” sensing characteristics is introduced. 3D‐CMA combines several sensing mechanisms and sensing elements via 3D integration of semiconducting SnO2 nanowire frameworks and dual‐functioning Au metallic nanoparticles. It is shown that the multimodal sensor can successfully estimate mixed‐gas compositions selectively and quantitatively at the sub‐100 ppm level, even for mixtures of gaseous aromatic compounds (nitrobenzene and toluene) with very similar molecular structures. This is enabled by combined chemo‐resistive and SERS multimodal sensing providing complementary information.
Nanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons. Despite the high annealing temperatures, the average grain size was maintained at ~6 nm, which also retained their structural integrity. We observe that excess oxygen in amorphous tin oxide nanoribbons prevents merging of small grains during crystallization, leading to suppressed grain growth. As an exemplary application, we demonstrate a gas sensor using grain growth-suppressed tin oxide nanoribbons, which exhibited both high sensitivity and unusual long-term operation stability. Our findings provide a previously unknown pathway to simultaneously achieve high performance and excellent thermal stability in nanograined metal oxide nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.