The gene coding for nitrite reductase of Pseudomonas aeruginosa has been cloned and its sequence determined. The coding region is 1707 bp long and contains information for a polypeptide chain of 568 amino acids. The sequence of the mature protein has been confirmed independently by extensive amino acid sequencing. The amino-terminus of the mature protein is located at Lys-26; the preceding 25 residue long extension shows the features typical of signal peptides. Therefore the enzyme is probably secreted into the periplasmic space. The mature protein is made of 543 amino acid residues and has a molecular mass of 60204 Da. The c-heme-binding domain, which contains the only two Cys of the molecule, is located at the amino-terminal region. Analysis of the protein sequence in terms of hydrophobicity profile gives results consistent with the fact that the enzyme is fully water soluble and not membrane bound; the most hydrophilic region appears to correspond to the c-heme domain. Secondary structure predictions are in general agreement with previous analysis of circular dichroic data.Nitrite reductase; Primary structure; Pre-protein; Cytochrome oxidase; (Pseudomonas aeruginosa)
Carbohydrate epitopes are capable of binding human IgE from allergic subjects and these epitopes play a role in the cross-reactivity between allergens from unrelated sources. A monoclonal antibody (5E6), specific for a carbohydrate epitope detectable on components of Cupressus arizonica pollen extract, has been produced and characterized. To study the relationship between the epitopes recognized by the monoclonal antibody and by IgE from allergic subjects. To investigate the presence of such carbohydrate IgE determinant in extracts from 21 pollen species belonging to 16 taxonomically related and unrelated families, by means of the monoclonal antibody. IgG-depleted fraction from protein G-purified human allergic serum was obtained. The monoclonal antibody and the IgE from the purified fraction were tested on two glycoproteins, polyamine oxidase and ascorbate oxidase, adsorbed on the ELISA plates. The relationship between the monoclonal- and the IgE-recognized epitopes was investigated by ELISA-competition experiments. Analysis of the distribution of this carbohydrate epitope was performed by direct binding of the monoclonal antibody onto the various extracts. The monoclonal antibody and the IgE were able to bind carbohydrate epitopes on the two plant glycoproteins, ascorbate oxidase and polyamine oxidase. Polyamine oxidase shows only one N-glycosilation site whose carbohydrate moiety seems to be composed of a branched chain of seven ordered sugars, i.e. two N-acetyl-D-glucosamine-, three mannose-, one fucose- and one xylose-residues. This structure bears the epitope recognized by mAb 5E6. Human IgE from the IgG-depleted fraction were found capable of inhibiting the monoclonal antibody binding. The allergenic epitope identified was shared by a large number of extracts with different levels of reactivity (OD490 ranging from 0.110 to 2.060). Our data support the finding that a monoclonal antibody specific for a carbohydrate epitope of Cupressus arizonica pollen extract detects an epitope which is also recognized by IgE from allergic subjects. This characterized reagent could be a useful tool for studying distribution of cross-reactive carbohydrate determinants in allergenic pollen extracts and their components.
The complete amino acid sequence was determined for the Cu,Zn superoxide dismutase from the shark Prionace glauca. The active site region shows the substitution of an Arg for Lys at position 134, which is important for electrostatic facilitation of the diffusion of 4 to the catalytically active copper. This change may be related to observed alterations of electrostatic parameters of the enzyme (pKof the pH dependence of the enzyme activity, rate of inactivation by H202), although it preserves a high efficiency of dismutation at neutral pH.Superoxide dismutase.; Amino acid sequence; Electrostatic interaction
During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here we characterize the Drosophila Doublefault (Dbf) protein as a C2H2-zinc finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila. We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement for dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.