[1] The metabolic rates of seagrass communities were synthesized on the basis of a data set on seagrass community metabolism containing 403 individual estimates derived from a total of 155 different sites. Gross primary production (GPP) rates (mean ± SE = 224.9 ± 11.1 mmol O 2 m −2 d −1 ) tended to be significantly higher than the corresponding respiration (R) rates (mean ± SE = 187.6 ± 10.1 mmol O 2 m −2 d −1 ), indicating that seagrass meadows tend to be autotrophic ecosystems, reflected in a positive mean net community production (NCP 27.2 ± 5.8 mmol O 2 m −2 d −1 ) and a mean P/R ratio above 1 (1.55 ± 0.13). Tropical seagrass meadows tended to support higher metabolic rates and somewhat lower NCP than temperate ones. The P/R ratio tended to increase with increasing GPP, exceeding, on average, the value of 1 indicative of metabolic balance for communities supporting a GPP greater than 186 mmol O 2 m −2 d −1 , on average. The global NCP of seagrass meadows ranged (95% confidence limits of mean values) from 20.73 to 50.69 Tg C yr −1 considering a low global seagrass area of 300,000 km 2 and 41.47 to 101.39 Tg C yr −1 when a high estimate of global seagrass area of 600,000 km 2 was considered. The global loss of 29% of the seagrass area represents, therefore, a major loss of intense natural carbon sinks in the biosphere.
The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate change mitigation and adaptation has now reached international prominence. To help prioritise future research, we assembled leading experts in the field to agree upon the top-ten pending questions in BC science. Understanding how climate change affects carbon accumulation in mature BC ecosystems and during their restoration was a high priority.Controversial questions included the role of carbonate and macroalgae in BC cycling, and the degree to which greenhouse gases are released following disturbance of BC ecosystems. Scientists seek improved precision of the extent of BC ecosystems; techniques to determine BC provenance; understanding of the factors that influence sequestration in BC ecosystems, with the corresponding value of BC; and the management actions that are effective in enhancing this value. Overall this overview provides a comprehensive road map for the coming decades on future research in BC science.
Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented.
Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities. These species caused an overall significant, but modest in magnitude (as indicated by a mean effect size of g < 0.2), decrease in ecological variables. Marine primary producers and predators were the most disruptive trophic groups of the exotic species. Approximately 10% (that is, 2 out of 19) of the exotic species assessed in at least three independent studies had significant impacts on native species. Separating the innocuous from the disruptive exotic species provides a basis for triage efforts to control the marine exotic species that have the most impact, thereby helping to meet Aichi Biodiversity Target 9 of the Convention on Biological Diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.