p21-activated kinase 4 (PAK4) regulates a wide range of cellular events, including cytoskeletal remodeling, cell growth, and survival. Our previous study identified PAK4 as a key regulator of cAMP-response element-binding protein (CREB) that acts upstream of microphthalmia-associated transcription factor (MITF), a master transcription factor in melanogenesis. We therefore investigated the role of PAK4 in melanogenesis. Melanocytes express both PAK2 and PAK4 isoforms, but only RNA interference knockdown of PAK4 significantly influenced α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis in B16 melanoma cells. Consistent with this result, PAK4 inhibition by PF3758309, a potent ATP-competitive inhibitor of PAKs, suppressed not only α-MSH-induced melanogenesis in B16 melanoma and human epithelial melanocyte cells but also UVB-induced melanogenesis in the skin of melanin-possessing hairless mice (HRM-2) in a dose-dependent manner. Inhibition of PAK4 over several days markedly decreased the levels of CREB, MITF, and tyrosinase in both HRM-2 mice and B16 melanoma cells. Moreover, PAK4 knockdown and inhibition suppressed α-MSH-stimulated β-catenin phosphorylation at serine 675 (S675) but enhanced phosphorylation at S33/37, an indicator for ubiquitination-dependent proteolysis. Together, our results provide evidence that PAK4 promotes α-MSH/UVB-induced melanogenesis via the CREB and Wnt/β-catenin signaling pathways and suggest that PAK4 may be a potential therapeutic target in pigmentation disorders.
The beta and gamma subunits of heterotrimeric GTP-binding proteins (Gbetagamma) were found to bi-directionally regulate the UV-induced activation of p38 and c-Jun NH(2)-terminal kinase, and the UV-induced activation of p38 was reported to enhance the resistance of normal keratinocytes to apoptosis. However, the signaling pathway downstream of Gbetagamma for this UV-induced p38 activation is not known. Thus, we examined the role of the Rho GTPase family in the regulation of UV-induced p38 activation by Gbetagamma. We found that overexpression of Gbetagamma increased the UV-induced activation of Cdc42 and that overexpression of constitutively active V12 Cdc42 increased the UV-induced p38 activation. Transfection of dominant negative N17 Cdc42 or small interfering RNA for Cdc42 blocked UV-induced p38 activation mediated by Gbetagamma in COS-1 and HaCaT cells. UV-induced p38 activation by Gbetagamma was blocked by overexpression of dominant negative p21-activated kinase (PAK)-interacting exchange factor beta (betaPix), and wild type betaPix stimulated the UV-induced p38 activation, which was blocked by N17 Cdc42. Gbetagamma increased the UV-induced activation of Ras, and the overexpression of V12 Ras increased UV-induced p38 activation, which was blocked by dominant negative betaPix. UV-induced p38 activation was inhibited by N17 Ras and a farnesyltransferase inhibitor, manumycin A. Gbetagamma also increased the UV-induced phosphorylation of the epidermal growth factor receptor (EGFR), and the UV-induced p38 activation was blocked by an EGFR kinase inhibitor, AG1478. From these results, we conclude that Gbetagamma mediates UV-induced activation of p38 in a Cdc42-dependent way and that EGFR, Ras, and betaPix act sequentially upstream of Cdc42 in COS-1 and HaCaT cells.
These results suggest that lidocaine therapy may be effective in treating neuropathic pain after spinal nerve injury, and that these effects may occur via suppression of ERK 1/2 and CREB signalling proteins and anti-inflammatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.