Vaccine induced protection against infection by HIV or highly pathogenic and virulent SIV-strains has been limited. Here, in a proof of concept study, we show that a novel vaccine approach significantly protects Rhesus macaques from mucosal infection by the highly pathogenic strain SIVmac251. We vaccinated 3 cohorts of 12 macaques each with live, irradiated vaccine cells secreting the modified ER chaperone gp96−Ig. Cohort 1 was vaccinated with cells secreting gp96SIVIg carrying SIV peptides. Cohort 2 in addition received recombinant envelope protein SIV-gp120. Cohort 3 was injected with cells secreting gp96-Ig (no SIV antigens) vaccines. Cohort 2 was protected from infection. After seven rectal challenges with highly pathogenic SIVmac251 the hazard ratio was 0.27 corresponding to a highly significant, 73% reduced risk of viral acquisition. The apparent success of the novel vaccine modality recommends further study.
The ER-resident chaperone gp96, when released by cell lysis, induces an immunogenic chemokine signature and causes innate immune activation of DC and NK cells. Here we show that intraperitoneal immunization with a genetically engineered, secreted form of gp96, gp96-Ig chaperoning SIV antigens, induces high levels of antigen specific CD8 CTL in the rectal and vaginal mucosa of Rhesus macaques. The frequency of SIV Gag-and SIV Tat-tetramer positive CD8 CTL in the intestinal mucosa reached 30-50% after the third immunization. Tetramer positive CD8 CTL expressed appropriate functional (granzyme B) and migration markers (CD103). The polyepitope specificity of the mucosal CD8 and CD4 response is evident from a strong, multifunctional cytokine response upon stimulation with peptides covering the gag, tat and env proteins. Induction of powerful mucosal effector CD8 CTL responses by cell-based gp96 SIV -Ig immunization may provide a pathway to the development of safe and effective SIV/HIV vaccines.
Induction of mucosal immunity is critical for protection from enteric pathogens. Heat shock protein gp96 is one of the primary peptide and protein chaperones located in the endoplasmic reticulum. We reported previously that a cell-secreted gp96-Ig fusion protein (gp96-Ig) mediated strong systemic, antigen-specific CD8-CTL expansion in vivo. We now evaluate the mucosal immune response to stimulation by secreted gp96 using allogeneic NIH-3T3 transfected with ovalbumin (OVA) and gp96-Ig. A single intraperitoneal NIH-3T3-OVA-gp96-Ig immunization caused significant homing of OVA-specific TCR transgenic CD8 cells (OT-I) to Peyer's patches, to the intraepithelial compartment and to the lamina propria. Intraperitoneal immunization with cells secreting gp96-Ig provided stronger mucosal immunity than the same dose instilled vaginally or rectally or injected subcutaneously or intradermally. Our results provide the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce mucosal immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.