SummaryGene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r 2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability.
SummaryLenalidomide is an effective drug in low-risk myelodysplastic syndromes (MDS) with isolated del(5q), although not all patients respond. Studies have suggested a role for TP53 mutations and karyotype complexity in disease progression and outcome. In order to assess the impact of complex karyotypes on treatment response and disease progression in 52 lenalidomide-treated patients with del(5q) MDS, conventional G-banding cytogenetics (CC), single nucleotide polymorphism array (SNP-A), and genomic sequencing methods were used. SNP-A analysis (with control sample, lymphocytes CD3+, in 30 cases) revealed 5q losses in all cases. Other recurrent abnormalities were infrequent and were not associated with lenalidomide responsiveness. Low karyotype complexity (by CC) and a high baseline platelet count (>280 9 10 9 /l) were associated with the achievement of haematological response (P = 0Á020, P = 0Á013 respectively). Unmutated TP53 status showed a tendency for haematological response (P = 0Á061). Complete cytogenetic response was not observed in any of the mutated TP53 cases. By multivariate analysis, the most important predictor for lenalidomide treatment failure was a platelet count <280 9 10 9 /l (Odds Ratio = 6Á17, P = 0Á040). This study reveals the importance of a low baseline platelet count, karyotypic complexity and TP53 mutational status for response to lenalidomide treatment. It supports the molecular study of TP53 in MDS patients treated with lenalidomide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.