Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells.algae ͉ Laminaria ͉ x-ray absorption spectroscopy ͉ cathodic stripping square wave voltammetry
Circulating endothelial cells (CECs) as well as bone-marrow-derived endothelial precursor cells (EPC) play an important role in neovascularisation and tumour growth. To study the impact of neoadjuvant chemotherapy on the amounts of CEC and their precursor cells, mature CEC and their progenitors were quantified by flow cytometry in peripheral blood of breast cancer patients during anthracycline and/or taxane based neoadjuvant chemotherapy and subsequent surgery in comparison to age-matched healthy controls. Cell numbers were tested for correlation with serum levels of angiopoietin-2, erythropoietin, endostatin, endoglin, VEGF and sVCAM-1 as well as clinical and pathological features of breast cancer disease. Circulating endothelial cells were significantly elevated in breast cancer patients and decreased during chemotherapy, whereas EPC (CD34 þ /VEGFR-2 þ ) as well as their progenitor cell population CD133 þ /CD34 þ and the population of CD34 þ stem cells increased. Concomitantly with the increase of progenitor cells an increase of VEGF, erythropoietin and angiopoietin-2 was observed. These data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy. Since this mobilisation of EPC may contribute to tumour neovascularisation an early antiangiogenic therapy in combination with chemotherapy could be beneficial for the success of cancer therapy.
Posttraumatic stress disorder (PTSD) is associated with an enhanced susceptibility to various somatic diseases. However, the exact mechanisms linking traumatic stress to subsequent physical health problems have remained unclear. This study investigated peripheral T lymphocyte differentiation subsets in 19 individuals with war and torture related PTSD compared to 27 non-PTSD controls (n=14 trauma-exposed controls; n=13 non-exposed controls). Peripheral T cell subpopulations were classified by their characteristic expression of the lineage markers CD45RA and CCR7 into: naïve (CD45RA(+) CCR7(+)), central memory (T(CM): CD45RA(-) CCR7(+)) and effector memory (T(EM): CD45RA(-) CCR7(-) and T(EMRA): CD45RA(-) CCR7(-)) cells. Furthermore, we analyzed regulatory T cells (CD4(+)CD25(+)FoxP3(+)) and ex vivo proliferation responses of peripheral blood mononuclear cells after stimulation with anti-CD3 monoclonal antibody. Results show that the proportion of naïve CD8(+) T lymphocytes was reduced by 32% (p=0.01), whereas the proportions of CD3(+) central (p=0.02) and effector (p=0.01) memory T lymphocytes were significantly enhanced (+22% and +34%, respectively) in PTSD patients compared to non-PTSD individuals. To a smaller extent, this effect was also observed in trauma-exposed non-PTSD individuals, indicating a cumulative effect of traumatic stress on T cell distribution. Moreover, PTSD patients displayed a 48% reduction in the proportion of regulatory T cells (p<0.001). Functionally, these alterations were accompanied by a significantly enhanced (+34%) ex vivo proliferation of anti-CD3 stimulated T cells (p=0.05). The profoundly altered composition of the peripheral T cell compartment might cause a state of compromised immune responsiveness, which may explain why PTSD patients show an increased susceptibility to infections, and inflammatory and autoimmune diseases.
Background: Bone marrow-derived progenitors for both epithelial and endothelial cells have been observed in the lung. Besides mature endothelial cells (EC) that compose the adult vasculature, endothelial progenitor cells (EPC) are supposed to be released from the bone marrow into the peripheral blood after stimulation by distinct inflammatory injuries. Homing of ex vivo generated bone marrow-derived EPC into the injured lung has not been investigated so far. We therefore tested the hypothesis whether homing of EPC in damaged lung tissue occurs after intravenous administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.