Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological lightdark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.circadian rhythm | proteomics | liver metabolism | posttranslational regulation | protein secretion L ight and heat, the principle energy sources for life, are only periodically available with a period of 1 d. Consequently, organisms acquired a timing system to adapt their physiology and anticipate these diurnal variations. In mammals, this circadian clock influences most aspects of physiology and behavior (1). In humans, perturbations of this clock lead to pathologies, including metabolic and vascular diseases. Although the oscillatory clockwork is cell-autonomous, timing on the scale of organisms uses a hierarchal organization: a master clock within the suprachiasmatic nuclei (SCN) of the hypothalamus receives light input through the retina and communicates timing signals to slave oscillators in other peripheral tissues (2).In mammals, the molecular oscillator uses interconnected transcriptional and translational feedback loops, in which multiple layers of control, including temporal posttranscriptional and posttranslational regulation, play important roles (3). An active area of chronobiology aims at understanding how the temporal signals from the core oscillator are relayed to clock output function. In this context, genome-wide rhythms in mRNA accumulation were characterized in several models. In general, around 10% of the genes, encoding many enzymes involved in different aspects of cellular metabolism, show rhythmic mRNA accumulation, establishing the role of the circadian clock in temporally gating rhythmic physiology (4).However, comparatively little is known on the temporal accumulation of proteins, despite increasing evidence suggesting that posttranscriptional mechanisms also contr...
The authors identify a new role of the circadian clock in coordinating mRNA translation during ribosome biogenesis, a key process for cell metabolism.
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.circadian rhythms | ribosome profiling | mRNA translation | 5′-TOP sequences | TISU motifs L iving organisms on Earth are subjected to light-dark cycles caused by rotation of the Earth around the sun. To anticipate these changes, virtually all organisms have acquired a circadian timing system during evolution that allows a better adaptation to their environment. As a consequence, most aspects of their physiology are orchestrated in a rhythmic way by the circadian clock (from the Latin circa diem, meaning "about a day"), an endogenous and autonomous oscillator with a period of around 24 h (1, 2). Not surprisingly, perturbations of this clock in mammals lead to pathologies including psychiatric, metabolic, and vascular disorders (1,3,4). At the organismal scale, the oscillatory clockwork is organized in a hierarchal manner. Within the suprachiasmatic nuclei (SCN) of the hypothalamus, the "master clock" receives light input via the retina and communicates timing signals to "enslave" oscillators in peripheral organs (1, 2). The molecular oscillator consists of interconnected transcriptional and translational feedback loops, in which multiple layers of control, including temporal posttranscriptional and posttranslational regulation, play important roles (5). These additional layers of regulation are largely coordinated by systemic cues originating from circadian clock and/or feeding-coordinated rhythmic metabolism, allowing the adjustment of the molecular clo...
SummaryThe circadian clock and associated feeding rhythms have a profound impact on metabolism and the gut microbiome. To what extent microbiota reciprocally affect daily rhythms of physiology in the host remains elusive. Here, we analyzed transcriptome and metabolome profiles of male and female germ-free mice. While mRNA expression of circadian clock genes revealed subtle changes in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated with rhythmic physiology. Strikingly, the absence of the microbiome attenuated liver sexual dimorphism and sex-specific rhythmicity. The resulting feminization of male and masculinization of female germ-free animals is likely caused by altered sexual development and growth hormone secretion, associated with differential activation of xenobiotic receptors. This defines a novel mechanism by which the microbiome regulates host metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.