Guanosine has many trophic effects in the CNS, including the stimulation of neurotrophic factor synthesis and release by astrocytes, which protect neurons against excitotoxic death. Therefore, we questioned whether guanosine protected astrocytes against apoptosis induced by staurosporine. We evaluated apoptosis in cultured rat brain astrocytes, following exposure (3 h) to 100 nM staurosporine by acridine orange staining or by oligonucleosome, or caspase-3 ELISA assays. Staurosporine promoted apoptosis rapidly, reaching its maximal effect (approximately 10-fold over basal apoptotic values) in 18-24 h after its administration to astrocytes. Guanosine, added to the culture medium for 4 h, starting from 1 h prior to staurosporine, reduced the proportion of apoptotic cells in a concentration-dependent manner. The IC50 value for the inhibitory effect of guanosine is 7.5 x 10(-5) M. The protective effect of guanosine was not affected by inhibiting the nucleoside transporters by propentophylline, or by the selective antagonists of the adenosine A1 or A2 receptors (DPCPX or DMPX), or by an antagonist of the P2X and P2Y purine receptors (suramin). In contrast, pretreatment of astrocytes with pertussis toxin, which uncouples Gi-proteins from their receptors, abolished the antiapoptotic effect of guanosine. The protective effect of guanosine was also reduced by pretreatment of astrocytes with inhibitors of the phosphoinositide 3-kinase (PI3K; LY294002, 30 microM) or the MAPK pathway (PD98059, 10 microM). Addition of guanosine caused a rapid phosphorylation of Akt/PKB, and glycogen synthase kinase-3beta (GSK-3beta) and induced an upregulation of Bcl-2 mRNA and protein expression. These data demonstrate that guanosine protects astrocytes against staurosporine-induced apoptosis by activating multiple pathways, and these are mediated by a Gi-protein-coupled putative guanosine receptor.
1 Extracellular guanosine has diverse e ects on many cellular components of the central nervous system, some of which may be related to its uptake into cells and others to its ability to release adenine-based purines from cells. Yet other e ects of extracellular guanosine are compatible with an action on G-protein linked cell membrane receptors. 4 This site was speci®c for guanosine, and the order of potency in displacing 50 nM [ 3 H]-guanosine was: guanosine=6-thio-guanosine4inosine46-thio-guanine4guanine. Other naturally occurring purines, such as adenosine, hypoxanthine, xanthine ca eine, theophylline, GDP, GMP and ATP were unable to signi®cantly displace the radiolabelled guanosine. Thus, this binding site is distinct from the well-characterized receptors for adenosine and purines. 5 The addition of GTP produced a small concentration-dependent decrease in guanosine binding, suggesting this guanosine binding site was linked to a G-protein.
Astrocytes release adenine-based and guanine-based purines under physiological and, particularly, pathological conditions. Thus, the aim of this study was to determine if adenosine induced apoptosis in cultured rat astrocytes. Further, if guanosine, which increases the extracellular concentration of adenosine, also induced apoptosis determined using the TUNEL and Annexin V assays. Adenosine induced apoptosis in a concentration-dependent manner up to 100 microM. Inosine, hypoxanthine, guanine, and guanosine did not. Guanosine or adenosine (100 microM) added to the culture medium was metabolized, with 35% or 15%, respectively, remaining after 2-3 h. Guanosine evoked the extracellular accumulation of adenosine, and particularly of adenine-based nucleotides. Cotreatment with EHNA and guanosine increased the extracellular accumulation of adenosine and induced apoptosis. Inhibition of the nucleoside transporters using NBTI (100 microM) or propentophylline (100 microM) significantly decreased but did not abolish the apoptosis induced by guanosine + EHNA or adenosine + EHNA, respectively. Apoptosis produced by either guanosine + EHNA or adenosine + EHNA was unaffected by A(1) or A(2) adenosine receptor antagonists, but was significantly reduced by MRS 1523, a selective A(3) adenosine receptor antagonist. Adenosine + EHNA, not guanosine + EHNA, significantly increased the intracellular concentration of S-adenosyl-L-homocysteine (SAH) and greatly reduced the ratio of S-adenosyl-L-methioine to SAH, which is associated with apoptosis. These data demonstrate that adenosine mediates apoptosis of astrocytes both, via activation of A(3) adenosine receptors and by modulating SAH hydrolase activity. Guanosine induces apoptosis by accumulating extracellular adenosine, which then acts solely via A(3) adenosine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.