1. We have described a general ribonucleotide probe in situ hybridization methodology for localization of mRNA in frozen, unfixed tissue sections of brain. 2. The most important steps in obtaining consistent and reproducible autoradiographs with ribonucleotide probes were tissue acetylation and application of the radiolabeled probe to tissue sections under unsealed, glass coverslips. 3. Variability of the hybridization signal in tissue sections has been minimized to achieve a high degree of reproducibility within a given experiment as determined by densitometric analysis of rat glucocorticoid and mineralocorticoid receptor mRNA hybridization autoradiographs. 4. Tissue quality has been optimized for high-resolution anatomical localization of mRNA species by nuclear track emulsion. 5. The protocol is amenable to rapid, batchwise processing of tissue samples.
We report here a study of the plasma ACTH and corticosterone responses to synthetic ovine CRH (oCRH) in hypothyroid and hyperthyroid rats studied 7, 15, and 60 days after either thyroidectomy or the administration of pharmacological doses of T4. The purpose of this study was to further clarify the time-dependent effects of alterations in thyroid status on the functional integrity of the hypothalamic-pituitary-adrenal axis and to aid in the interpretation of the oCRH stimulation test in hypo- and hyperthyroid states. Our data demonstrate that hypothyroid rats have a significant reduction in the cerebrospinal fluid (CSF) levels of corticosterone and a significant decrease in adrenal weight in association with significant increases in the plasma ACTH response to oCRH. On the other hand, the corticosterone response to the ACTH released during the oCRH stimulation test was significantly reduced in hypothyroidism. With increasing duration of thyroidectomy-induced hypothyroidism, there was a progressive fall in CSF corticosterone levels, a progressive increase in the plasma ACTH response to oCRH, and a gradual normalization of the corticosterone responses to the ACTH released during oCRH stimulation. Our findings in hyperthyroid rats were generally the converse of those seen in hypothyroidism. Hence, there was a significant increase in the CSF levels of corticosterone and a significant increase in adrenal weight in association with an initial slight decrease in the ACTH response to oCRH. On the other hand, the corticosterone response to the ACTH released during oCRH stimulation was significantly increased. There was a gradual increase in the magnitude of the rise in CSF corticosterone levels with time, as well as a gradual normalization of adrenocortical responses during oCRH stimulation. The ACTH plasma clearance rates were similar in hypo-, hyper-, and euthyroid rats. Our data do not permit definitive identification of the precise locus in the hypothalamic-pituitary-adrenal axis that is principally affected by experimentally induced alterations in thyroid status. However, these data are most compatible with a subtle hypothyroid-induced centrally mediated adrenal insufficiency and a subtle hyperthyroid-induced centrally mediated hypercortisolism. These data also suggest that alterations in hypothalamic-pituitary-adrenal function in states of disturbed thyroid function become somewhat more pronounced as the duration of thyroid dysfunction increases. The fact that pituitary-adrenal responses to oCRH are consistently altered in states of thyroid dysfunction may be relevant to the clinical interpretation of oCRH stimulation tests.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.