This study analyzes local‐scale temperature and precipitation projections in the Shire River Basin (SRB) in Malawi using 10 global circulation models (GCMs) available in the coupled model intercomparison project phase 5 (CMIP5), under two representative concentration pathways (RCP 4.5 and RCP 8.5). For nine stations in the study area, large‐scale maximum temperature (Tmax), minimum temperature (Tmin) and precipitation data from the selected GCMs were downscaled by the sixth version of the Long Ashton Research Station Weather Generator (LARS‐WG6). The mean seasonal and annual change projections for Tmax, Tmin and precipitation during two future periods, that is, the middle future (2041–2070) and late future (2071–2100) periods were analyzed. Modelling results demonstrated that the LARS‐WG model is capable of simulating temperature more accurately than precipitation in the SRB. All 10 GCMs revealed that continually rising temperatures are anticipated in the study area; however, the projected magnitude of change varied across GCMs and between RCPs. Generally, the increase in average Tmax and Tmin was observed to be higher under RCP 8.5 compared with RCP 4.5 due to unmitigated greenhouse gas emissions (GHGs). Future precipitation change results showed more complexity and uncertainty than for temperature; not all GCMs agree on whether there will be positive or negative changes in precipitation and no systematic variations under RCP4.5 and RCP8.5 were observed during the two future time period, illustrating that both GCMs and RCPs are important sources of the relatively large uncertainties in future precipitation projections in the SRB. Thus, this study indicated that uncertainties constrained by both GCMs and RCPs are crucial and need to always be considered when executing climate impact studies and adaptation, particularly at river basin level.
Microbial-induced calcite precipitation (MICP) is a novel ground improvement method to increase the strength and stiffness of sand. However, the influences of temperature load on the internal microstructure of microbial cemented sand (MCS) material under the experimented strain have always been a key concern for the extensive application. Three kinds of experiments, X-ray diffraction (XRD), X-ray computed tomography (XCT), and scanning electron microscopy (SEM), were conducted to explore the composition, shape, and bonding characteristics of physical assemblies in this paper. A precision DEM modelling of MCS, mainly composed of irregular particle modelling and a mesoparameter calibration algorithm, has been proposed for the thermal cracking analysis under various strains (i.e., 1.0‰–3.0‰). Research results indicate that three kinds of bonding (that is sand-calcite, calcite-calcite, and sand-sand) are present in the MCS material. The application of temperature has a superposition effect on the damage of MCS material with increasing strain. Moreover, as the heating duration gradually increases, the effect of thermal rupture produces a distinct quiet period. The length of thermal cracks in the transverse direction increases throughout the heating process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.