Purpose The blood-brain barrier (BBB) is modified to a blood-tumor barrier (BTB) as a brain metastasis develops from breast or other cancers. We (a) quantified the permeability of experimental brain metastases; (b) determined the composition of the BTB; (c) identified which elements of the BTB distinguished metastases of lower permeability from those with higher permeability. Experimental Design A SUM190-BR3 experimental inflammatory breast cancer brain metastasis subline was established. Experimental brain metastases from this model system and two previously reported models (triple-negative MDA-231-BR6, HER2+ JIMT-1-BR3) were serially sectioned; low and high permeability lesions were identified with systemic 3kDa Texas Red dextran dye. Adjoining sections were used for quantitative immunofluorescence to known BBB and neuroinflammatory components. One-sample comparisons against a hypothesized value of one were performed with the Wilcoxon signed-rank test. Results When uninvolved brain was compared to any brain metastasis, alterations in endothelial, pericytic, astrocytic, and microglial components were observed. When metastases with relatively low- and high permeability were compared, increased expression of a desmin+ subpopulation of pericytes was associated with higher permeability (231-BR6 p=0.0002; JIMT-1-BR3 p=0.004; SUM190-BR3 p=0.008); desmin+ pericytes were also identified in human craniotomy specimens. Trends of reduced CD13+ pericytes (231-BR6 p=0.014; JIMT-1-BR3 p=0.002, SUM190-BR3, NS) and laminin α2 (231-BR6 p=0.001; JIMT-1-BR3 p=0.049; SUM190-BR3 p=0.023) were also observed with increased permeability. Conclusions We provide the first account of the composition of the BTB in experimental brain metastasis. Desmin+ pericytes and laminin α2 are potential targets for the development of novel approaches to increase chemotherapeutic efficacy.
Ewing sarcoma family of tumors (ESFT) is a group of aggressive pediatric malignancies driven by the EWS-FLI1 fusion protein, an aberrant transcription factor up-regulating specific target genes, such as neuropeptide Y (NPY) and its Y1 and Y5 receptors (Y5Rs). Previously, we have shown that both exogenous NPY and endogenous NPY stimulate ESFT cell death via its Y1 and Y5Rs. Here, we demonstrate that this effect is prevented by dipeptidyl peptidases (DPPs), which cleave NPY to its shorter form, NPY 3-36 , not active at Y1Rs. We have shown that NPYinduced cell death can be abolished by overexpression of DPPs and enhanced by their down-regulation. Both NPY treatment and DPP blockade activated the same cell death pathway mediated by poly(ADP-ribose) polymerase (PARP-1) and apoptosisinducing factor (AIF). Moreover, the decrease in cell survival induced by DPP inhibition was blocked by Y1 and Y5R antagonists, confirming its dependence on endogenous NPY. Interestingly, similar levels of NPY-driven cell death were achieved by blocking membrane DPPIV and cytosolic DPP8 and DPP9. Thus, this is the first evidence of these intracellular DPPs cleaving releasable peptides, such as NPY, in live cells. In contrast, another membrane DPP, fibroblast activation protein (FAP), did not affect NPY actions. In conclusion, DPPs act as survival factors for ESFT cells and protect them from cell death induced by endogenous NPY. This is the first demonstration that intracellular DPPs are involved in regulation of ESFT growth and may become potential therapeutic targets for these tumors.
Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES.
Brain metastases are devastating complications of cancer. The blood–brain barrier (BBB), which protects the normal brain, morphs into an inadequately characterized blood–tumor barrier (BTB) when brain metastases form, and is surrounded by a neuroinflammatory response. These structures contribute to poor therapeutic efficacy by limiting drug uptake. Here, we report that experimental breast cancer brain metastases of low- and high permeability to a dextran dye exhibit distinct microenvironmental gene expression patterns. Astrocytic sphingosine-1 phosphate receptor 3 (S1P3) is upregulated in the neuroinflammatory response of the highly permeable lesions, and is expressed in patients’ brain metastases. S1P3 inhibition functionally tightens the BTB in vitro and in vivo. S1P3 mediates its effects on BTB permeability through astrocytic secretion of IL-6 and CCL2, which relaxes endothelial cell adhesion. Tumor cell overexpression of S1P3 mimics this pathway, enhancing IL-6 and CCL-2 production and elevating BTB permeability. In conclusion, neuroinflammatory astrocytic S1P3 modulates BTB permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.