In human plasma, platelet activating factor (PAF)-degrading acetylhydrolase (acetylhydrolase) is principally transported in association with LDLs and HDLs; this enzyme hydrolyzes PAF and short-chain forms of oxidized phosphatidylcholine, transforming them into lyso-PAF and lysophosphatidylcholine, respectively. We have examined the distribution, catalytic characteristics, and transfer of acetylhydrolase activity among plasma lipoprotein subspecies separated by isopycnic density gradient ultracentrifugation; the possibility that the plasma enzyme may be partially derived from adherent monocytes has also been evaluated. In normolipidemic subjects with Lp(a) levels < 0.1 mg/mL, acetylhydrolase was associated preferentially with small, dense LDL particles (LDL-5; d = 1.050 to 1.063 g/mL) and with the very-high-density lipoprotein-1 subfraction (VHDL-1; d = 1.156 to 1.179 g/mL), representing 23.9 +/- 1.7% and 20.6 +/- 3.2%, respectively, of total plasma activity. The apparent Km values for PAF of the enzyme associated with such lipoproteins were 89.7 +/- 23.4 and 34.8 +/- 4.5 mumol/L for LDL-5 and VHDL-1, respectively: indeed, the Km value for LDL-5 was some 10-fold higher than that of the light LDL-1, LDL-2, and LDL-3 subspecies, whereas the Km of VHDL-1 was some twofold greater than those of the HDL-2 and HDL-3 subspecies. Furthermore, when expressed on the basis of unit plasma volume, the Vmax of the acetylhydrolase associated with LDL-5 was some 150-fold greater than that in LDL-1 (d = 1.019 to 1.023 g/mL). No significant differences in the pH dependence of enzyme activity or in sensitivity to protease inactivation, sulfydryl reagents, the serine protease inhibitor Pefabloc, or the PAF antagonist CV 3988 could be detected between apo B-containing and apo A-I-containing lipoprotein particle subspecies. Incubation of LDL-1 (Km = 8.4 +/- 2.6 mumol/L) and LDL-2 (d = 1.023 to 1.029 g/mL; Km = 8.4 +/- 3.3 mumol/L) subspecies with LDL-5, in which acetylhydrolase had been inactivated by pretreatment with Pefabloc, demonstrated preferential transfer of acetylhydrolase to LDL-5. Acetylhydrolase transferred to LDL-5 from the light LDL subspecies exhibited a Km of 9.4 +/- 2.2 mumol/L, a value characteristic of the particle donors. Finally, acetylhydrolase (Km = 23.4 +/- 7.6 mumol/L) released by adherent human monocytes in culture was found to bind preferentially to small, dense LDL subspecies upon incubation of Pefabloc-inactivated plasma with monocyte supernatant.(ABSTRACT TRUNCATED AT 400 WORDS)
Background-Obesity-associated dyslipidemia in humans is associated with increased low-density lipoprotein (LDL) oxidation. Mice with combined leptin and LDL receptor deficiency are obese and show severe dyslipidemia and insulin resistance. We investigated the association between oxidation of apolipoprotein B-containing lipoproteins, high-density lipoprotein (HDL) antioxidant defense, and atherosclerosis in these mice. Methods and Results-LDL receptor knockout (LDLR Ϫ/Ϫ ), leptin-deficient (ob/ob), double-mutant (LDLR Ϫ/Ϫ ;ob/ob), and C57BL6 mice were fed standard chow. Double-mutant mice had higher levels of non-HDL (PϽ0.001) and HDL (PϽ0.01) cholesterol and of triglycerides (PϽ0.001). They also had higher oxidative stress, evidenced by higher titers of autoantibodies against malondialdehyde-modified LDL (PϽ0.001). C57BL6 and ob/ob mice had no detectable lesions. Lesions covered 20% of total area of the thoracic abdominal aorta in double-mutant mice compared with 3.5% in LDLR Ϫ/Ϫ mice (PϽ0.01). Higher macrophage homing and accumulation of oxidized apolipoprotein B-100 -containing lipoproteins were associated with larger plaque volumes in the aortic root of double-mutant mice (PϽ0.01). The activity of the HDL-associated antioxidant enzymes paraoxonase and lecithin:cholesterol acyltransferase (LCAT) (ANOVA; PϽ0.0001 for both) was lower in double-mutant mice. Adenovirus-mediated LCAT gene transfer in double-mutant mice increased plasma LCAT activity by 64% (PϽ0.01) and reduced the titer of autoantibodies by 40% (PϽ0.01) and plaque volume in the aortic root by 42% (PϽ0.05) at 6 weeks. Conclusions-Dyslipidemia and insulin resistance in obese LDL receptor-deficient mice are associated with increased oxidative stress and impaired HDL-associated antioxidant defense, evidenced by decreased paraoxonase and LCAT activity. Transient LCAT overexpression was associated with a reduction of oxidative stress and atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.