BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.)
Examination of tissue sections using desorption electrospray ionization (DESI)-MS revealed phospholipid-derived signals that differ between gray matter, white matter, gliomas, meningiomas, and pituitary tumors, allowing their ready discrimination by multivariate statistics. A set of lower mass signals, some corresponding to oncometabolites, including 2-hydroxyglutaric acid and N-acetylaspartic acid, was also observed in the DESI mass spectra, and these data further assisted in discrimination between brain parenchyma and gliomas. The combined information from the lipid and metabolite MS profiles recorded by DESI-MS and explored using multivariate statistics allowed successful differentiation of gray matter (n = 223), white matter (n = 66), gliomas (n = 158), meningiomas (n = 111), and pituitary tumors (n = 154) from 58 patients. A linear discriminant model used to distinguish brain parenchyma and gliomas yielded an overall sensitivity of 97.4% and a specificity of 98.5%. Furthermore, a discriminant model was created for tumor types (i.e., glioma, meningioma, and pituitary), which were discriminated with an overall sensitivity of 99.4% and a specificity of 99.7%. Unsupervised multivariate statistics were used to explore the chemical differences between anatomical regions of brain parenchyma and secondary infiltration. Infiltration of gliomas into normal tissue can be detected by DESI-MS. One hurdle to implementation of DESI-MS intraoperatively is the need for tissue freezing and sectioning, which we address by analyzing smeared biopsy tissue. Tissue smears are shown to give the same chemical information as tissue sections, eliminating the need for sectioning before MS analysis. These results lay the foundation for implementation of intraoperative DESI-MS evaluation of tissue smears for rapid diagnosis. ambient ionization | MS imaging | multivariate statistics | pathology | neurosurgery M S is increasingly being used in medicine (e.g., in clinical chemistry, pharmaceutical development, and proteomics). Ambient ionization methods generate ions under atmospheric conditions, with minimal to no sample preparation (1). Desorption electrospray ionization (DESI), an ambient method that uses a spray of charged solvent as the projectile, provides rapid chemical information while preserving tissue and cellular morphology, allowing subsequent histopathology on the same specimen (2). This feature allows integration of DESI-MS into current workflows and postacquisition pathology. DESI-MS has been used to study prostate cancer (3), bladder cancer (4), kidney cancer (5), seminoma (6), lymphoma (7), gastrointestinal cancer (8), and others. In each case, the recorded pattern of lipid signals allows the differentiation of cancer from normal tissue. DESI-MS has been previously used to explore chemical differences among glioma subtypes, grades, and tumor cell concentrations (relative percentage of tumor compared with parenchyma) (9, 10). Meningiomas have also been studied previously and were distinguished from normal dura mater (11).T...
EAE can refer either to experimental autoimmune encephalomyelitis or experimental allergic encephalomyelitis. Although EAE is classically a prototypic T helper 1 (TH1) cell-mediated autoimmune disease, it can also be induced by TH2 cells. Characteristically, the most severe manifestation of allergy, anaphylaxis, is associated with exposure to a foreign antigen that is often derived from medication, insect venom or food. We report here that, after self-tolerance to myelin is destroyed, anaphylaxis may be triggered by a self-antigen, in this case a myelin peptide. "Horror autotoxicus", which was initially described by Ehrlich, may not only include autoimmunity to self, it may also encompass immediate hypersensitivity to self, which leads to shock and rapid death.
Intraoperative desorption electrospray ionization-mass spectrometry (DESI-MS) is used to characterize tissue smears by comparison with a library of DESI mass spectra of pathologically determined tissue types. Measurements are performed in the operating room within 3 min. These mass spectra provide direct information on tumor infiltration into white or gray brain matter based on N-acetylaspartate (NAA) and on membrane-derived complex lipids. The mass spectra also indicate the isocitrate dehydrogenase mutation status of the tumor via detection of 2-hydroxyglutarate, currently assessed postoperatively on biopsied tissue using immunohistochemistry. Intraoperative DESI-MS measurements made at surgeon-defined positions enable assessment of relevant disease state of tissue within the tumor mass and examination of the resection cavity walls for residual tumor. Results for 73 biopsies from 10 surgical resection cases show that DESI-MS allows detection of glioma and estimation of high tumor cell percentage (TCP) at surgical margins with 93% sensitivity and 83% specificity. TCP measurements from NAA are corroborated by indirect measurements based on lipid profiles. Notably, high percentages (>50%) of unresected tumor were found in one-half of the margin biopsy smears, even in cases where postoperative MRI suggested gross total tumor resection. Unresected tumor causes recurrence and malignant progression, as observed within a year in one case examined in this study. These results corroborate the utility of DESI-MS in assessing surgical margins for maximal safe tumor resection. Intraoperative DESI-MS analysis of tissue smears, ex vivo, can be inserted into the current surgical workflow with no alterations. The data underscore the complexity of glioma infiltration.e describe the rapid analysis of neurological tissue smears by desorption electrospray ionization-mass spectrometry (DESI-MS) in the operating room (OR) from 10 subjects who underwent glioma resection. Biopsied tissue specimens from surgeon-defined positions in the tumor and the walls of the resection cavity were smeared onto glass microscope slides and sprayed with charged solvent droplets to extract molecules from the unprocessed tissue while the splashed secondary droplets were vacuumed into a customized ion-trap mass spectrometer modified for use in the OR at Indianapolis IU (Indiana University) Health Methodist Hospital. Three separate items of information were sought from the DESI mass spectra: (i) tissue type, specifically whether glioma, white brain matter, gray brain matter, or mixtures of these types; (ii) isocitrate dehydrogenase (IDH) status, i.e., whether or not this enzyme carries a characteristic mutation, the presence of which is associated with more favorable prognosis; and (iii) the tumor cell percentage (TCP) in the sampled biopsy as a measure of tumor infiltration (the latter is arguably the most actionable intraoperatively and the one for which the least information is currently available).The infiltrative nature of most gliomas, as well as visu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.