The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.
The anti-apoptotic proteins Bcl-2 and Bcl-X L bind and inhibit Beclin-1, an essential mediator of autophagy. Here, we demonstrate that this interaction involves a BH3 domain within Beclin-1 (residues 114-123). The physical interaction between Beclin-1 and Bcl-X L is lost when the BH3 domain of Beclin-1 or the BH3 receptor domain of Bcl-X L is mutated. Mutation of the BH3 domain of Beclin-1 or of the BH3 receptor domain of Bcl-X L abolishes the Bcl-X L -mediated inhibition of autophagy triggered by Beclin-1. The pharmacological BH3 mimetic ABT737 competitively inhibits the interaction between Beclin-1 and Bcl-2/Bcl-X L , antagonizes autophagy inhibition by Bcl-2/Bcl-X L and hence stimulates autophagy. Knockout or knockdown of the BH3-only protein Bad reduces starvation-induced autophagy, whereas Bad overexpression induces autophagy in human cells. Gain-offunction mutation of the sole BH3-only protein from Caenorhabditis elegans, EGL-1, induces autophagy, while deletion of EGL-1 compromises starvation-induced autophagy. These results reveal a novel autophagy-stimulatory function of BH3-only proteins beyond their established role as apoptosis inducers. BH3-only proteins and pharmacological BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin-1 and Bcl-2 or Bcl-X L .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.