Abstract. We present the results of the first extensive mid-infrared (IR) imaging survey of the ρ Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main ρ Ophiuchi molecular cloud L1688, as well as the two secondary clouds L1689N and L1689S, have been completely surveyed for point sources at 6.7 µm and 14.3 µm. A total of 425 sources are detected in ∼0.7 deg 2 , including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fν ∼ 10-15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the ρ Ophiuchi central region. There are, however, reasons to believe that several tens of Class III YSOs remain to be identified below L ∼ 0.2 L . The mid-IR luminosities of most (∼65%) Class II objects are consistent with emission from purely passive circumstellar disks. The stellar luminosity function of the complete sample of Class II YSOs is derived with good accuracy down to L ∼ 0.03 L . It is basically flat (in logarithmic units) below L ∼ 2 L , exhibits a possible local maximum at L ∼ 1.5 L , and sharply falls off at higher luminosities. A modeling of the luminosity function, using available pre-main sequence tracks and plausible star formation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the initial mass function (IMF) of the embedded cluster. After correction for the presence of unresolved binary systems, we estimate that the IMF in ρ Ophiuchi is well described by a two-component power law with a low-mass index of −0.35 ± 0.25, a high-mass index of −1.7 (to be compared with the Salpeter value of −1.35), and a break occurring at M flat = 0.55 ± 0.25 M . This IMF is flat with no evidence for a low-mass cutoff down to at least ∼0.06 M .
ABSTRACT. Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2°wide strip in the longitude range |l| < 60°in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of starforming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA.
Abstract. We present results from an ISOCAM survey in the two broad band filters LW2 (5−8.5 µm) and LW3 (12−18 µm) of a 0.13 square degree coverage of the Serpens Main Cloud Core. A total of 392 sources were detected in the 6.7 µm band and 139 in the 14.3 µm band to a limiting sensitivity of ∼2 mJy. We identified 53 Young Stellar Objects (YSOs) with mid-IR excess from the single colour index [14.3/6.7], and 8 additional YSOs from the H − K/K − m 6.7 diagram. Only 32 of these 61 sources were previously known to be YSO candidates. Only about 50% of the mid-IR excess sources show excesses in the near-IR J − H/H − K diagram. In the 48 square arcmin field covering the central Cloud Core the Class I/Class II number ratio is 19/18, i.e. about 10 times larger than in other young embedded clusters such as ρ Ophiuchi or Chamaeleon. The mid-IR fluxes of the Class I and flat-spectrum sources are found to be on the average larger than those of Class II sources. Stellar luminosities are estimated for the Class II sample, and its luminosity function is compatible with a coeval population of about 2 Myr which follows a three segment power-law IMF. For this age about 20% of the Class IIs are found to be young brown dwarf candidates. The YSOs are in general strongly clustered, the Class I sources more than the Class II sources, and there is an indication of sub-clustering. The sub-clustering of the protostar candidates has a spatial scale of 0.12 pc. These sub-clusters are found along the NW−SE oriented ridge and in very good agreement with the location of dense cores traced by millimeter data. The smallest clustering scale for the Class II sources is about 0.25 pc, similar to what was found for ρ Ophiuchi. Our data show evidence that star formation in Serpens has proceeded in several phases, and that a "microburst" of star formation has taken place very recently, probably within the last 10 5 yrs.Key words. stars: formation -stars: pre-main-sequence -stars: luminosity function, mass functionstars: low-mass, brown dwarfs -ISM: individual objects: Serpens Cloud Core Send offprint requests to: A. A. Kaas, e-mail: akaas@not.iac.es Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with participation of ISAS and NASA. Tables 2 and 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 106 clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than the temperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its interaction with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.