Plasma oxidation of the c-Si substrate through a very thin gate oxide layer can be observed during HBr/O2/Ar based plasma overetch steps of gate etch processes. This phenomenon generates the so-called silicon recess in the channel and source/drain regions of the transistors. In this work, the authors compare the silicon recess generated by continuous wave HBr/O2/Ar plasmas and synchronous pulsed HBr/O2/Ar plasmas. Thin SiO2 layers are exposed to continuous and pulsed HBr/O2/Ar plasmas, reproducing the overetch process conditions of a typical gate etch process. Using in situ ellipsometry and angle resolved X-ray photoelectron spectroscopy, the authors demonstrate that the oxidized layer which leads to silicon recess can be reduced from 4 to 0.8 nm by pulsing the plasma in synchronous mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.