We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (µSR) measurements. Zero-field µSR reveals the occurrence of small spontaneous static magnetic fields with the onset of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field µSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data. Transition metal pnictides have attracted considerable scientific interest as they present the second largest family of superconductors after the cuprates [1]. All superconductors of this family share one common structural feature: superconductivity takes place in a square lattice formed by the transition metal elements. Very recently superconductivity with a T c of 2.4 K has been discovered in SrPtAs [2], which has a unique and attractive structural feature: It crystallizes in a hexagonal structure with weakly coupled PtAs layers forming a honeycomb lattice. SrPtAs supports three pairs of split Fermi surfaces, two of which are hole-like and centered around the Γ-point with a cylindrical shape extended along the k z direction and together host only about 30% of the density of states. The remaining 70% of the density of states are hosted by the third pair of split Fermi surfaces that is electron-like, centered around the K and K ′
Superconducting [(Li1−xFex)OH](Fe1−yLiy)Se (x≈0.2, y≈0.08) was synthesized by hydrothermal methods and characterized by single‐crystal and powder X‐ray diffraction. The structure contains alternating layers of anti‐PbO type (Fe1−yLiy)Se and (Li1−xFex)OH. Electrical resistivity and magnetic susceptibility measurements reveal superconductivity at 43 K. An anomaly in the diamagnetic shielding indicates ferromagnetic ordering near 10 K while superconductivity is retained. The ferromagnetism is from the iron atoms in the (Li1−xFex)OH layer. Isothermal magnetization measurements confirm the superposition of ferromagnetic and superconducting hysteresis. The internal ferromagnetic field is larger than the lower, but smaller than the upper critical field of the superconductor. The formation of a spontaneous vortex phase where both orders coexist is supported by 57Fe‐Mössbauer spectra, 7Li‐NMR spectra, and μSR experiments.
or most of its history, the superconductivity of strontium ruthenate (Sr 2 RuO 4) (ref. 1) has been understood in terms of an odd-parity two-component order parameter with equal-spin pairing in the RuO 2 planes: p x ± ip y (refs. 2-5). This order parameter is chiral: the Cooper pairs have angular momentum l = ±1. The evidence for chirality comes from the zero-field muon spin relaxation (ZF-μSR) data 6 , observation of a non-zero Kerr rotation below the critical temperature T c (ref. 7) and signs in the junction experiments of domains in the superconducting state 8,9 , while evidence for equal-spin pairing came from the absence of a change in the Knight shift below T c in nuclear magnetic resonance 10 and polarized neutron scattering 11 measurements. The Knight shift is related to the spin susceptibility; in conventional opposite-spin-pairing superconductors, it is suppressed below T c. However, in new measurements, it has been found that the Knight shift is, in fact, suppressed below T c (refs. 12-14), by a magnitude that is unlikely to be reconcilable with equal-spin pairing. This revision has called into question a number of other results on Sr 2 RuO 4. It raises a particular challenge for experiments that indicate chirality, because opposite-spin pairing implies an even-parity momentum-space gap structure. If the order parameter is constrained to be even parity, chiral, and composed of components that are degenerate on the tetragonal lattice of Sr 2 RuO 4 , the only possibility is d xz ± id yz order 15. Under conventional understanding, this is a highly unlikely order parameter because it
We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La 2−x Ba x CuO 4 with x ¼ 0.115. An extremely low uniaxial stress of ∼0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from ∼10 to 32 K; however, the onset of at-least-2D superconductivity is much less sensitive to stress. These results show not only that largevolume-fraction spin-stripe order is anticorrelated with 3D superconducting coherence but also that these states are energetically very finely balanced. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. These results strongly suggest a similar pairing mechanism for spin-stripe order and the spatially modulated 2D and uniform 3D superconducting orders, imposing an important constraint on theoretical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.