To identify differentially expressed genes in soybean grown under different drought conditions, cDNA libraries from roots of different genotypes were constructed. Genes of contrasting genotypes of soybean were found to be differentially expressed in plants exposed to drought conditions. A total of 753 no redundant clones were identified by PCR, and these were printed on microarray glass slides. Probes of total RNA were prepared from bulked roots subjected to 25 and 50 min (Bulk 1) or 75 and 100 min (Bulk 2) of drought stress. Differential expression of 145 genes, involved in metabolic pathways responsive to biotic and abiotic stresses, was observed. These genes were classified into nine functional categories, including energy, transcription factors, metabolism, stress response, protein synthesis, cell communication, cell cycle, cell transport, and unknown function. The functionality of some of these genes was confirmed by quantitative real-time PCR (qRT-PCR).
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.
Thirty Boophilus microplus strains from various geographic regions of Brazil, Argentina, Uruguay, Venezuela and Colombia were analyzed for the bm86 and bm95 gene. A fragment of cDNA of 794 base pairs of the parasite larvae, included between nucleotides 278-1071s, was amplified and cloned on the pGEM-T vector. Two random clones were sequenced for each population and the nucleotides 278-1071 and predicted amino acid sequences compared with the bm86 and bm95 genes. Variations from 1.76 to 3.65% were detected in the nucleotides sequence when compared with the homologous sequence of the bm86 gene and a 3.4-6.08% in the homologous amino acid sequence of the Bm86 protein. When the sequences obtained were compared with the bm95 gene, variations from 0.50 to 3.15% were detected. Variations from 1.14 to 4.56% were detected for the Bm95 protein homologous sequences in the deduced amino acid sequence. Only five of the 30 strains analyzed presented two different types of alleles expressed and the two alleles of the Alegre population and allele 1 of the Betim population were the most divergent of all those analyzed.
Defensin, thionin and lipid transfer protein (LTP) gene families, which antimicrobial activity has an attractive use in protein engineering and transgenic production of agronomical important plants, have been here functionally reviewed. Also, a transcriptional overview of a set of plant SuperSAGE libraries and analysis looking for 26 bp tags possibly annotated for those families is presented. Tags differentially expressed (p = 0.05) or constitutively transcribed were identified from leaves or roots SuperSAGE libraries from important Brazilian plant species [cowpea (Vigna unguiculata (L.) Walp.), soybean (Glycine max (L.) Merr.) and modern sugarcane hybrids (Saccharum spp.)] submitted to abiotic [salt (100 mM NaCl) or drought] or biotic stresses [fungus inoculation (Phakopsora pachyrhizi; Asiatic Soyben Rust phytopathogen)]. The diverse transcriptional patterns observed, probably related to the variable range of targets and functions involved, could be the first step to unravel the antimicrobial peptide world and the plant stress response relationship. Moreover, SuperSAGE opens the opportunity to find some SNPs or even rare transcript that could be important on plant stress resistance mechanisms. Putative defensin or LTP identified by SuperSAGE following a specific plant treatment or physiological condition could be useful for future use in genetic improvement of plants.
The soybean ubiquitous urease (encoded by GmEu4) is responsible for recycling metabolically derived urea. Additional biological roles have been demonstrated for plant ureases, notably in toxicity to other organisms. However, urease enzymatic activity is not related to its toxicity. The role of GmEu4 in soybean susceptibility to fungi was investigated in this study. A differential expression pattern of GmEu4 was observed in susceptible and resistant genotypes of soybeans over the course of a Phakopsora pachyrhizi infection, especially 24 h after infection. Twenty-nine adult, transgenic soybean plants, representing six independently transformed lines, were obtained. Although the initial aim of this study was to overexpress GmEu4, the transgenic plants exhibited GmEu4 co-suppression and decreased ureolytic activity. The growth of Rhizoctonia solani, Phomopsis sp., and Penicillium herguei in media containing a crude protein extract from either transgenic or non-transgenic leaves was evaluated. The fungal growth was higher in the protein extracts from transgenic urease-deprived plants than in extracts from non-transgenic controls. When infected by P. pachyrhizi uredospores, detached leaves of urease-deprived plants developed a significantly higher number of lesions, pustules and erupted pustules than leaves of non-transgenic plants containing normal levels of the enzyme. The results of the present work show that the soybean plants were more susceptible to fungi in the absence of urease. It was not possible to overexpress active GmEu4. For future work, overexpression of urease fungitoxic peptides could be attempted as an alternative approach.Electronic supplementary materialThe online version of this article (doi:10.1007/s11103-012-9894-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.