Abstract. The Curiosity rover discovered fine--grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial--lacustrine environments in the post--Noachian history of Mars.
The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).
X-ray diffraction analysis of the Rocknest scoop sample is described in (23); similar analyses were performed for John Klein and Cumberland. John Klein and Cumberland were the first two drill samples collected by Curiosity. All scooped or drilled samples pass through the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) sample collection and processing system (10). All powders for X-ray diffraction are processed through a 150-m sieve before delivering a portion to the CheMin inlet funnel.The sieved drill powders were placed into sample cells with 6 μm thick Mylar® windows. Mylar® contributes a minor, broad scattering signature in diffraction patterns that is generally "swamped" by diffraction from the loaded sample. In addition, an aluminized light shield also contributes "peaks" to the observed diffraction patterns. Only ~10 mm 3 of material is required to fill the active volume of the sample cell, which is a disc-shaped volume 8 mm in diameter and 175 m thick. A collimated ∼70 μm diameter X-ray beam illuminates the center of the sample cell. A piezoelectric vibration system on each cell pair shakes the material during analysis, causing grains in the cell to pass through the X-ray beam in random orientations.CheMin measures XRD and XRF data simultaneously using Co radiation in transmission geometry (11). The instrument operates in single-photon counting mode so that between each readout the majority of CCD pixels are struck by either a single X-ray photon or by no photons. In this way, the system can determine both the energy of the photons striking the CCD (XRF) and the two-dimensional (2-D) position of each photon (XRD). The energy and positional information of detected photons in each frame are summed over repeated 10-sec measurements into a "minor frame" of 30 min of data (180 frames). The 2-D distribution of Co K X-ray intensity represents the XRD pattern of the sample. Circumferential integration of these rings, corrected for arc length, produces a conventional 1-D XRD pattern. For conversion of the 2-D CCD pattern to a 1-D pattern we have used FilmScan © software from Materials Data, Inc.CheMin generally operates for only a few hours each night, when the CCD can be cooled to its lowest temperature, collecting as many minor frames as possible for the available analysis time, usually five to seven per night. XRD data were acquired over multiple nights for the John Klein and Cumberland drill samples to provide acceptable counting statistics. Total data collection times were 33.9 hr for John Klein and 20.2 hr for Cumberland. The data for individual minor frames and for each night's analysis were examined separately, and there was no evidence of any changes in instrumental parameters as a function of time over the duration of these analyses. Before sample delivery and analysis, the empty cell was analyzed to confirm that it was indeed empty before receiving the sample. The flight instrument was calibrated on the ground before flight using a quartz-beryl standard, and measurement of this st...
The sample analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H 2 , SO 2 , H 2 S, NO, CO 2 , CO, O 2 , and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO 2 (160 ± 248-2373 ± 820 μgC (CO2) /g) and CO (11 ± 3-320 ± 130 μgC (CO) /g) suggest that organic C is present in Gale Crater materials. Five samples evolved CO 2 at temperatures consistent with carbonate (0.32 ± 0.05-0.70 ± 0.1 wt % CO 3 ). Evolved NO amounts to 0.002 ± 0.007-0.06 ± 0.03 wt % NO 3 . Evolution of O 2 suggests that oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025-1.05 ± 0.44 wt % ClO 4 ) are present, while SO 2 evolution indicates the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H 2 O (0.9 ± 0.3-2.5 ± 1.6 wt % H 2 O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H 2 and H 2 S suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.
International audienceSamples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.