We present initial results of an ESO-VLT large programme (AMAZE) aimed at determining the evolution of the mass-metallicity relation at z > 3 by means of deep near-IR spectroscopy. Gas metallicities are measured, for an initial sample of nine star forming galaxies at z ∼ 3.5, by means of optical nebular lines redshifted into the near-IR. Stellar masses are accurately determined by using Spitzer-IRAC data, which sample the rest-frame near-IR stellar light in these distant galaxies. When compared with previous surveys, the mass-metallicity relation inferred at z ∼ 3.5 shows an evolution much stronger than observed at lower redshifts. The evolution is prominent even in massive galaxies, indicating that z ∼ 3 is an epoch of major action in terms of star formation and metal enrichment also for massive systems. There are also indications that the metallicity evolution of low mass galaxies is stronger relative to high mass systems, an effect which can be considered the chemical version of the galaxy downsizing. The mass-metallicity relation observed at z ∼ 3.5 is difficult to reconcile with the predictions of some hierarchical evolutionary models. Such discrepancies suggest that at z > 3 galaxies are assembled mostly with relatively un-evolved sub-units, i.e. small galaxies with low star formation efficiency. The bulk of the star formation and metallicity evolution probably occurs once small galaxies are already assembled into bigger systems.
We present a SINFONI integral-field kinematical study of 33 galaxies at z ∼ 3 from the AMAZE and LSD projects, which are aimed at studying metallicity and dynamics of high-redshift galaxies. The number of galaxies analyzed in this paper constitutes a significant improvement over existing data in the literature, and this is the first time that a dynamical analysis is obtained for a relatively large sample of galaxies at z ∼ 3. Eleven galaxies show ordered rotational motions (∼30% of the sample). In these cases we estimate dynamical masses by modeling the gas kinematics with rotating disks and exponential mass distributions. We find dynamical masses in the range 2 × 10 9 M −2 × 10 11 M with a mean value of ∼2 × 10 10 M . By comparing observed gas velocity dispersion with what is expected from models, we find that most rotating objects are dynamically "hot", with intrinsic velocity dispersions of ∼90 km s −1 . The median value of the ratio between the maximum disk rotational velocity and the intrinsic velocity dispersion for the rotating objects is 1.6, much lower than observed in local galaxies value (∼10) and slightly lower than the z ∼ 2 value (2-4). Finally we use the maximum rotational velocity from our modeling to build a baryonic Tully-Fisher relation at z ∼ 3. Our measurements indicate that z ∼ 3 galaxies have lower stellar masses (by a factor of ten on average) compared to local galaxies with the same dynamical mass. However, the large observed scatter suggests that the Tully-Fisher relation is not yet "in place" at these early cosmic ages, possibly owing to the young age of galaxies. A smaller dispersion of the Tully-Fisher relation is obtained by taking the velocity dispersion into account with the use of the S 0.5 indicator, suggesting that turbulent motions might play an important dynamical role.
Star-forming galaxies are considered to be the leading candidate sources that dominate the cosmic reionization at z > 7, and the search for analogs at moderate redshift showing Lyman continuum (LyC) leakage is currently a active line of research. We have observed a star-forming galaxy at z = 3.2 with Hubble/WFC3 in the F336W filter, corresponding to the 730-890Å rest-frame, and detect LyC emission. This galaxy is very compact and also has large Oxygen ratio [OIII]λ5007/[OII]λ3727 ( 10). No nuclear activity is revealed from optical/nearinfrared spectroscopy and deep multi-band photometry (including the 6Ms X-ray Chandra). The measured escape fraction of ionizing radiation spans the range 50-100%, depending on the IGM attenuation. The LyC emission is detected with m F336W = 27.57 ± 0.11 (S/N=10) and it is spatially unresolved, with effective radius R e < 200pc. Predictions from photoionization and radiative transfer models are in line with the properties reported here, indicating that stellar winds and supernova explosions in a nucleated star-forming region can blow cavities generating density-bounded conditions compatible with optically thin media. Irrespective to the nature of the ionizing radiation, spectral signatures of these sources over the entire electromagnetic spectrum are of central importance for their identification during the epoch of reionization, when the LyC is unobservable. Intriguingly, the Spitzer/IRAC photometric signature of intense rest-frame optical emissions ([O III]λλ4959, 5007 + Hβ) observed recently at z 7.5 − 8.5 is similar to what is observed in this galaxy. Only the James Webb Space Telescope will measure optical line ratios at z > 7 allowing a direct comparison with lower redshift LyC emitters, as reported here.
Context. Precise stellar ages from asteroseismology have become available and can help setting stronger constraints on the evolution of the Galactic disc components. Recently, asteroseismology has confirmed a clear age difference in the solar annulus between two distinct sequences in the [α/Fe] versus [Fe/H] abundance ratios relation: the high-α and low-α stellar populations. Aims. We aim at reproducing these new data with chemical evolution models including different assumptions for the history and number of accretion events. Methods. We tested two different approaches: a revised version of the "two-infall" model where the high-α phase forms by a fast gas accretion episode and the low-α sequence follows later from a slower gas infall rate, and the parallel formation scenario where the two disc sequences form coevally and independently. Results. The revised "two-infall" model including uncertainties in age and metallicity is capable of reproducing: i) the [α/Fe] vs. [Fe/H] abundance relation at different Galactic epochs, ii) the age−metallicity relation and the time evolution [α/Fe]; iii) the age distribution of the high-α and low-α stellar populations, iv) the metallicity distribution function. The parallel approach is not capable of properly reproduce the stellar age distribution, in particular at old ages. Conclusions. The best chemical evolution model is the revised "two-infall" one, where a consistent delay of ∼4.3 Gyr in the beginning of the second gas accretion episode is a crucial assumption to reproduce stellar abundances and ages.
Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code ramses, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code gasoline. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients at ∼1−3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.