Examining a sample of massive galaxies at 1:4 < z < 2:5 with K Vega < 22 from GOODS, we compare photometry from Spitzer at mid-and far-IR to submillimeter, radio, and rest-frame UV wavelengths, to test the agreement between different tracers of star formation rates (SFRs) and to explore the implications for galaxy assembly. For z $ 2 galaxies with moderate luminosities (L 8 m < 10 11 L ), we find that the SFR can be estimated consistently from the multiwavelength data based on local luminosity correlations. However, 20%Y30% of massive galaxies, and nearly all those with L 8 m > 10 11 L , show a mid-IR excess that is likely due to the presence of obscured active nuclei, as shown in a companion paper. There is a tight and roughly linear correlation between stellar mass and SFR for 24 mYdetected galaxies. For a given mass, the SFR at z ¼ 2 was larger by a factor of $4 and $30 relative to that in star-forming galaxies at z ¼ 1 and 0, respectively. Typical ultraluminous infrared galaxies (ULIRGs) at z ¼ 2 are relatively ''transparent'' to ultraviolet light, and their activity is long lived (k400 Myr), unlike that in local ULIRGs and high-redshift submillimeter-selected galaxies. ULIRGs are the common mode of star formation in massive galaxies at z ¼ 2, and the high duty cycle suggests that major mergers are not the dominant trigger for this activity. Current galaxy formation models underpredict the normalization of the mass-SFR correlation by about a factor of 4 and the space density of ULIRGs by an order of magnitude but give better agreement for z > 1:4 quiescent galaxies.
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ∼10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the
We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin 2 . We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P < 0.004 (i.e., the probability of sources not being real is less than 0.004); this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2 Ms CDF-S main-catalog sources. We determine X-ray source positions using centroid and matched-filter techniques and obtain a median positional uncertainty of ≈ 0.42 ′′ . We also provide a supplementary catalog, which consists of 36 sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 , satisfy the condition of 0.004 < P < 0.1, and have an optical counterpart with R < 24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources in the main and supplementary catalogs. 716 (≈ 97%) of the 740 main-catalog sources have multiwavelength counterparts, with 673 (≈ 94% of 716) having either spectroscopic or photometric redshifts. The 740 main-catalog sources span broad ranges of full-band flux and 0.5-8 keV luminosity; the 300 new main-catalog sources span similar ranges although they tend to be systematically lower. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that > 75% of the main-catalog sources are AGNs; of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3 ′ ), the observed AGN and galaxy source densities have reached 9800 +1300 −1100 deg −2 and 6900 +1100 −900 deg −2 , respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 count Ms −1 pixel −1 (for a pixel size of 0.492 ′′ ) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of ≈ 3.2 × 10 −17 , 9.1 × 10 −18 , and 5.5 × 10 −17 erg cm −2 s −1 for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of ≈ 2-2.5 would provide further significant gains and probe key unexplored discovery space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.