Prions are infectious particles causing transmissible spongiform encephalopathies (TSEs). They consist, at least in part, of an isoform (PrPSc) of the ubiquitous cellular prion protein (PrPC). Conformational differences between PrPC and PrPSc are evident from increased beta-sheet content and protease resistance in PrPSc. Here we describe a monoclonal antibody, 15B3, that can discriminate between the normal and disease-specific forms of PrP. Such an antibody has been long sought as it should be invaluable for characterizing the infectious particle as well as for diagnosis of TSEs such as bovine spongiform encephalopathy (BSE) or Creutzfeldt-Jakob disease (CJD) in humans. 15B3 specifically precipitates bovine, murine or human PrPSc, but not PrPC, suggesting that it recognizes an epitope common to prions from different species. Using immobilized synthetic peptides, we mapped three polypeptide segments in PrP as the 15B3 epitope. In the NMR structure of recombinant mouse PrP, segments 2 and 3 of the 15B3 epitope are near neighbours in space, and segment 1 is located in a different part of the molecule. We discuss models for the PrPSc-specific epitope that ensure close spatial proximity of all three 15B3 segments, either by intermolecular contacts in oligomeric forms of the prion protein or by intramolecular rearrangement.
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Borna disease virus (BDV) is the causative agent of severe T-cell–mediated meningoencephalitis in horses, sheep, and other animal species in central Europe. Here we report the first unequivocal detection of a BDV reservoir species, the bicolored white-toothed shrew, Crocidura leucodon, in an area in Switzerland with endemic Borna disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.