It is widely accepted that the therapeutic potential of stem cells can be largely mediated by paracrine factors, also included into exosomes. Thus, stem cell-derived exosomes represent a major therapeutic option in regenerative medicine avoiding, if compared to stem cells graft, abnormal differentiation and tumor formation. Exosomes derived from mesenchymal stem cells (MSC) induce damaged tissue repair, and can also exert immunomodulatory effects on the differentiation, activation and function of different lymphocytes. Therefore, MSC exosomes can be considered as a potential treatment for inflammatory diseases and also an ideal candidate for allogeneic therapy due to their low immunogenicity. Amniotic fluid stem cells (AFSCs) are broadly multipotent, can be expanded in culture, and can be easily cryopreserved in cellular banks. In this study, morphology, phenotype, and protein content of exosomes released into amniotic fluid in vivo and from AFSC during in vitro culture (conditioned medium) were examined. We found that AFSC-derived exosomes present different molecules than amniotic fluid ones, some of them involved in immunomodulation, such transforming growth factor beta and hepatic growth factors. The immunomodulatory effect of AFSC's exosomes on peripheral blood mononuclear cells stimulated with phytohemagglutinin was compared to that of the supernatant produced by such conditioned media deprived of exosomes. We present evidence that the principal effect of AFSC conditioned media (without exosomes) is the induction of apoptosis in lymphocytes, whereas exposure to AFSC-derived exosomes decreases the lymphocyte's proliferation, supporting the hypothesis that the entire secretome of stem cells differently affects immune-response. © 2017 BioFactors, 44(2):158-167, 2018.
Objective We surveyed the datasheets of 29 laboratories concerning prenatal diagnosis of de novo apparently balanced chromosome rearrangements to assess the involvement of specific chromosomes, the breakpoints distribution and the impact on the pregnancy outcome.Method By means of a questionnaire, data on 269.371 analyses performed from 1983 to 2006 on amniotic fluid, chorionic villus and fetal blood samples were collected.Results A total of 246 balanced anomalies were detected at frequencies of 72% for reciprocal translocations, 18% for Robertsonian translocations, 7% for inversions and 3% for complex chromosome rearrangements. The total frequencies of balanced rearrangements were 0.09%, 0.08% and 0.05% on amniotic fluid, chorionic villus and fetal blood samples.Conclusion A preferential involvement of chromosomes 22, 7, 21, 3, 9 and 11 and a less involvement of chromosomes X, 19, 12, 6 and 1 was observed. A nonrandom distribution of the breakpoints across chromosomes was noticed. Association in the location of recurrent breakpoints and fragile sites was observed for chromosomes 11, 7, 10 and 22, while it was not recorded for chromosome 3. The rate of pregnancy termination was about 20%, with frequencies decreasing from complex chromosomal rearrangements (33%), reciprocal translocations (24%) to inversions (11%) and Robertsonian translocations (3%).
Purpose: We evaluated the experiences of 19 Italian laboratories concerning 241 small supernumerary marker chromosomes (sSMCs) with the aim of answering questions arising from their origin from any chromosome, their variable size and genetic content, and their impact on the carrier's phenotype. Methods: Conventional protocols were used to set up the cultures and chromosome preparations. Both commercial and homemade probes were used for the fluorescent in situ hybridization analyses. Results: A total of 113 of the 241 sSMCs were detected antenatally, and 128 were detected postnatally. There were 52 inherited and 172 de novo cases. Abnormal phenotype was present in 137 cases (57%), 38 of which were antenatally diagnosed. A mosaic condition was observed in 87 cases (36%). In terms of morphology, monocentric and dicentric bisatellited marker chromosomes were the most common, followed by monocentric rings and short-arm isochromosomes. The chromosomes generating the sSMCs were acrocentric in 132 cases (69%) and non-acrocentric chromosomes in 60 cases (31%); a neocentromere was hypothesized in three cases involving chromosomes 6, 8, and 15. The widespread use of molecular cytogenetic techniques in diagnostic laboratories has improved diagnostic quality, especially in prenatal cases. However, one of the few major problems remaining is the identification of the nature and origin of small supernumerary marker chromosomes (sSMCs).sSMCs display a wide range of morphology and occur at highly variable incidence, 1,2 thus giving rise to considerable problems in genetic counseling, particularly during prenatal testing. Only the combined use of conventional and molecular
Traditional approaches for the classification of Small Supernumerary Marker Chromosomes (sSMC), mostly based on FISH techniques, are time-consuming and not always sufficient to fully understand the true complexity of this class of rearrangements. We describe four supernumerary marker chromosomes that, after array-CGH, were interpreted rather differently in respect to the early classification made by conventional cytogenetics and FISH investigations, reporting two types of complex markers which DNA content was overlooked by conventional approaches: 1. the sSMC contains non-contiguous regions of the same chromosome and, 2. the sSMC, initially interpreted as a supernumerary del(15), turns out to be a derivative 15 to which the portion of another chromosome was attached. All are likely derived from partial trisomy rescue events, bringing further demonstration that germline chromosomal imbalances are submitted to intense reshuffling during the embryogenesis, leading to unexpected complexity and changing the present ideas on the composition of supernumerary marker chromosomes.
22q11.2 deletion syndrome is mainly characterized by conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial appearance. The etiology in the majority of patients is a 3-Mb recurrent deletion in region 22q11.2. Nevertheless, recently some cases of infrequent deletions with various sizes have been reported with a different phenotype. We report on a patient with congenital heart disease (truncus arteriosus type 2) in whom a de novo 1.3-Mb 22q11.2 deletion was detected by array comparative genomic hybridization. The deletion described corresponds to an atypical and distal deletion which spans low copy repeat (LCR) 4 and is associated with breakpoint sites that do not correspond to known LCRs of 22q11.2. We examine the clinical phenotype of our case and compare our findings with those published in the literature. The most prevalent clinical features in this type of deletion are a history of prematurity, pre-natal and post-natal growth retardation, slight facial dysmorphic features, microcephaly and developmental delay, with a speech defect in particular. These are clearly different from those found in the classic 22q11.2 deletion syndrome, and we believe that the main differential diagnosis should be with Silver-Russel syndrome. In our case we observe the cardiac phenotype with truncus arteriosus communis usually seen in the classic 22q11.2 deletion syndrome, and so far associated with the TBX1 gene. Significantly, however, TBX1 is not included in our patient’s deletion. The possible roles of a position effect or other genes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.