Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The MIMOSA pixel sensors developed in Strasbourg have demonstrated attractive features for the detection of charged particles in high energy physics. So far, full-size sensors have been prototyped only with analog readout, which limits the output rate to about 1000 frames/second. The new MIMOSA 26 sensor provides a 2.2 cm 2 sensitive surface with an improved readout speed of 10,000 frames/second and data throughput compression. It incorporates pixel output discrimination for binary readout and zero suppression microcircuits at the sensor periphery to stream only fired pixel out. The sensor is back from foundry since february 2009 and has being characterized in laboratory and in test beam. The temporal noise is measured around 13-14 e − and an operation point corresponding to an efficiency of 99.5±0.1 % for a fake rate of 10 −4 per pixel can be reached at room temperature.
MIMOSA 26 equips the final version of the EUDET beam telescope and prefigures the architecture of monolithic active pixel sensors (MAPS) for coming vertex detectors (STAR, CBM and ILC experiments) which have higher requirements. Developmentsin the architecture and technology of the sensors are ongoing and should allow to match the desired readout speed and radiation tolerance. Finally, the integration of MAPS into a micro-vertex detector is addressed. A prototype ladder equipped, on both sides, with a row of 6 MIMOSA 26-like sensors is under study, aiming for a total material budget about 0.3% X 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.