Abstract. The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors (Turner 2001), the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The concept of the pn-CCD is described as well as the different operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum efficiency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the first 9 months of in orbit operation.Key words. XMM-Newton -back illuminated pn-CCDs -radiation hardness -energy resolution -quantum efficiency -particle and flourescence background
We present the ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) derived from the all-sky survey performed during the first half year (1990/91) of the ROSAT mission. 18,811 sources are catalogued (i) down to a limiting ROSAT PSPC countrate of 0.05 cts/s in the 0.1−2.4 keV energy band, (ii) with a detection likelihood of at least 15 and (iii) at least 15 source counts. The 18,811 sources underwent both an automatic validation and an interactive visual verification process in which for 94% of the sources the results of the standard processing were confirmed. The remaining 6% have been analyzed using interactive methods and these sources have been flagged. Flags are given for (i) nearby sources; (ii) sources with positional errors; (iii) extended sources; (iv) sources showing complex emission structures; and (v) sources which are missed by the standard analysis software. Broad band (0.1−2.4 keV) images are available for sources flagged by (ii), (iii) and (iv). For each source the ROSAT name, position in equatorial coordinates, positional error, source count-rate and error, background count-rate, exposure time, two hardness-ratios and errors, extent and likelihood of extent, likelihood of detection, and the source extraction radius are provided. At a brightness limit of 0.1 cts/s (8,547 sources) the catalogue represents a sky coverage of 92%. The RASS-BSC, the table of possible identification candidates, and the broad band images are available in electronic form (Voges et al. 1996a) via http://wave.xray.mpe.mpg.de/rosat/catalogues/rassbsc . 1
Aims. We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods. We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4• × 6.4• sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results. We obtained about 135 000 X-ray detections in the 0.1−2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the normalised excess variance and a maximum amplitude variability analysis. X-ray spectral fits were performed using three basic models, a power law, a thermal plasma emission model, and black-body emission. Thirty-two large extended regions with diffuse emission and embedded point sources were identified and excluded from the present analysis. Conclusions. The 2RXS catalogue provides the deepest and cleanest X-ray all-sky survey catalogue in advance of eROSITA.
Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any X-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 s in 2003 to 1.13 s in 2014. It has an isotropic peak luminosity of ∼1000 times the Eddington limit for a NS at 17.1 Mpc. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity ≥1041 erg s −1 ) might harbor NSs.Ultraluminous x-ray sources (ULXs) are observed in off-nucleus regions of nearby galaxiesand have x-ray luminosities in excess of a few 10 39 erg s −1 , which is the Eddington luminosity (L Edd ) for a black hole (BH) of 10 M (1). The L Edd sets an upper limit on the accretion luminosity (L acc ) of a compact object steadily accreting, since for L acc > L Edd accretion will be halted by radiation forces. For spherical accretion of fully ionized hydrogen, the limit can be written as, where σ T is the Thomson scattering cross section, m p is the proton mass, and M/M is the compact object mass in solar masses; for a 1.4 M neutron star (NS), the maximum accreting luminosity is ∼2×10 38 erg s −1 .The high luminosity of ULXs has thus been explained as accretion at or above the Eddington luminosity onto BHs of stellar origin (<80-100 M ), or onto intermediate-mass (10BHs (2, 3). However, if the emission of ULXs were beamed over a fraction b < 1 of the sky, their true luminosity, and thus also the compact object mass required not to exceed L Edd , would be reduced by the same factor. This possibility, together with the recent identification of two accreting NSs associated with the ∼10 40 erg s −1 M82 X-2 (4) and NGC 7793 P13 (5, 6) x-ray sources, have brought support to the view that most low-luminosity ULXs likely host a NS (7) 2 or a stellar-mass BH (8). For the most extreme ULXs with x-ray luminosity exceeding a few ×10 40 erg s −1 , BHs with masses in excess of 100 M are still commonly considered (9, 10).Despite several searches for coherent x-ray pulsations,no other ultraluminous x-ray source has been found to host a NS so far (11).Within the framework of "Exploring the X-ray Transient and variable Sky", EXTraS (12) Fig. 1 and Table 1). In all cases, a strong first period derivative term is present (see Table 1). The pulse shape is nearly sinusoidal, while the pulsed fraction (the semi-amplitude of the sinusoid divided by the average count rate)is energy dependent and increases from about 12% at low energies (<2.5 keV) to ∼20% in the hard band (>7 keV; Fig. 1).To derive constraints on the orbital period (P orb ), we applied a likelihood analysis to the two 2014 NuSTAR observations (see supplementary online text), which have the longest baseline. 3By assuming a circular orbit (as in the case of M...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.