We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much-improved energy resolution over the previous analysis and extends HAWC’s ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log-parabola shape
with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 m from the shower axis, the best-fit values are
(TeV cm2 s)−1,
, and
. For the second estimator, a neural network that uses the charge distribution in annuli around the core and other variables, these values are
(TeV cm2 s)−1,
, and β = 0.06 ± 0.01 ± 0.02. The first set of uncertainties is statistical; the second set is systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at ≥5σ significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1° of previously detected TeV emitters, and 20 sources that are more than 1° away from any previously detected TeV source. Of these 20 new sources, 14 have a potential counterpart in the fourth Fermi Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the Australia Telescope National Facility (ATNF) pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
Abstract. The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV -100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.