Human and livestock diseases can be difficult to control where infection persists in wildlife populations. For three decades, European badgers (Meles meles) have been culled by the British government in a series of attempts to limit the spread of Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), to cattle. Despite these efforts, the incidence of TB in cattle has risen consistently, re-emerging as a primary concern for Britain's cattle industry. Recently, badger culling has attracted controversy because experimental studies have reached contrasting conclusions (albeit using different protocols), with culled areas showing either markedly reduced or increased incidence of TB in cattle. This has confused attempts to develop a science-based management policy. Here we use data from a large-scale, randomized field experiment to help resolve these apparent differences. We show that, as carried out in this experiment, culling reduces cattle TB incidence in the areas that are culled, but increases incidence in adjoining areas. These findings are biologically consistent with previous studies but will present challenges for policy development.
Summary1. The incidence of bovine tuberculosis (TB) in British cattle has risen markedly over the last two decades. Failure to control the disease in cattle has been linked to the persistence of a reservoir of infection in European badgers Meles meles , a nationally protected species. Although badger culling has formed a component of British TB control policy for many years, a recent large-scale randomized field experiment found that TB incidence in cattle was no lower in areas subject to localized badger culling than in nearby areas where no experimental culls occurred. Indeed, analyses indicated that cattle incidence was higher in culled areas. 2. One hypothesis advanced to explain this pattern is that localized culling disrupted badgers' territorial behaviour, potentially increasing the rate of contact between cattle and infected badgers. This study evaluated this hypothesis by investigating badger activity and spatial organization in 13 study areas subjected to different levels of culling. Badger home ranges were mapped by feeding colour-marked baits at badger dens and measuring the geographical area in which colour-marked faeces were retrieved. 3. Badger home ranges were consistently larger in culling areas. Moreover, in areas not subjected to culling, home range sizes increased with proximity to the culling area boundary. Patterns of overlap between home ranges were also influenced by culling. 4. Synthesis and applications. This study demonstrates that culling badgers profoundly alters their spatial organization as well as their population density. These changes have the potential to influence contact rates between cattle and badgers, both where culls occur and on adjoining land. These results may help to explain why localized badger culling appears to have failed to control cattle TB, and should be taken into account in determining what role, if any, badger culling should play in future control strategies.
Human and livestock diseases can be difficult to control where infection persists in wildlife populations. In Britain, European badgers (Meles meles) are implicated in transmitting Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), to cattle. Badger culling has therefore been a component of British TB control policy for many years. However, large-scale field trials have recently shown that badger culling has the capacity to cause both increases and decreases in cattle TB incidence. Here, we show that repeated badger culling in the same area is associated with increasing prevalence of M. bovis infection in badgers, especially where landscape features allow badgers from neighboring land to recolonize culled areas. This impact on prevalence in badgers might reduce the beneficial effects of culling on cattle TB incidence, and could contribute to the detrimental effects that have been observed. Additionally, we show that suspension of cattle TB controls during a nationwide epidemic of foot and mouth disease, which substantially delayed removal of TB-affected cattle, was associated with a widespread increase in the prevalence of M. bovis infection in badgers. This pattern suggests that infection may be transmitted from cattle to badgers, as well as vice versa. Clearly, disease control measures aimed at either host species may have unintended consequences for transmission, both within and between species. Our findings highlight the need for policymakers to consider multiple transmission routes when managing multihost pathogens.behavior ͉ bovine tuberculosis ͉ epidemiology ͉ Meles meles ͉ perturbation
Careful consideration is needed to determine in what settings systematic repeated culling might be reliably predicted to be beneficial, and in these cases whether the benefits of such culling warrant the costs involved.
Summary 1.Control of zoonotic disease is difficult to achieve when populations of multiple hosts, particularly wildlife, become persistently infected. Bovine tuberculosis (TB) is one such disease: its causative agent, Mycobacterium bovis , infects cattle, humans and multiple wildlife species including European badgers Meles meles . 2. In Britain, from 1974 to 1998 various strategies for the control of cattle TB involved culling badgers in the immediate vicinity of TB-affected herds. However, patterns of association between cattle and badgers had not been investigated at a local scale. 3. Using data from the Randomized Badger Culling Trial, an ongoing large-scale study of TB dynamics and control, we investigated local geographical associations between M. bovis infection in badgers and cattle. 4. Mycobacterium bovis infections were locally clustered within both badger and cattle populations. 5. We show, for the first time, that M. bovis infections in badgers and cattle are spatially associated at a scale of 1-2 km. Badgers and cattle infected with the same strain type of M. bovis are particularly closely correlated. These observational data support the hypothesis that transmission occurs between the two host species; however, they cannot be used to evaluate the relative importance of badger-to-cattle and cattle-tobadger transmission. 6. Synthesis and applications . The close associations between M. bovis infections in cattle and badgers suggest that localized badger culling could reasonably be expected to reduce the risks of cattle TB infection; however, experimental culls have found no such beneficial effects over the time-scale on which they were tested. This demonstrates the difficulty of predicting the outcome of management interventions, and reinforces the need for well-designed empirical assessments of future control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.