Intraperitoneal administration of human recombinant interleukin-1 (IL-1) to rats can increase blood levels of corticosterone and adrenocorticotropic hormone (ACTH). The route by which IL-1 affects pituitary-adrenal activity is unknown. That the IL-1-induced pituitary-adrenal activation involves an increased secretion of corticotropin-releasing factor (CRF) is indicated by three lines of evidence. First, immunoneutralization of CRF markedly attenuated the IL-1-induced increase of ACTH blood levels. Second, after blockade of fast axonal transport in hypothalamic neurons by colchicine, IL-1 administration decreased the CRF immunostaining in the median eminence, indicating an enhanced release of CRF in response to IL-1. Third, IL-1 did not stimulate ACTH release from primary cultures of anterior pituitary cells. These data further support the notion of the existence of an immunoregulatory feedback circuit between the immune system and the brain.
The hypothalamo-pituitary-adrenal (HPA) axis is known to be activated in depressed patients. Although direct evidence is lacking, this activation is hypothesized to be due to hyperactivity of corticotropin-releasing hormone (CRH) neurons of the hypothalamic paraventricular nucleus (PVN). Recent immunocytochemical studies in experimental animals and in humans showed that the number of CRH-expressing neurons correlated with the activity of these neurons. In addition, colocalization of AVP in CRH neurons has been shown to be an index for the secretory activity. Therefore, we estimated the total number of CRH-immunoreactive neurons and their fraction showing colocalization with AVP in the PVN of 10 control subjects and of 6 depressed patients who were diagnosed to be suffering from a major depression or a bipolar disorder. The mean total number of CRH-expressing neurons of the 6 depressed patients was four times higher, and the number of CRH neurons co-expressing AVP was almost three times higher than those in the control group. We also determined the two activity parameters of CRH neurons in the PVN of 2 subjects with a depressive organic mood syndrome or a depressive disorder not otherwise specified. In these two ‘non-major depressed’ subjects, the activity parameters of CRH neurons were comparable to those of control subjects. Our observations strongly support the hypothesis that CRH neurons in the PVN are hyperactivated in major depressed patients. This hyperactivity might be causally related to at least part of the symptomatology of depression.
Repeated treatment with psychostimulant drugs causes long-lasting behavioral sensitization and associated neuroadaptations. Although sensitization induced by a single psychostimulant exposure has also been reported, information on the behavioral and neurochemical consequences of a single psychostimulant exposure is sparse. Therefore, to evaluate whether behavioral sensitization evoked by single and repeated psychostimulant pretreatment regimens represent the same neurobiological phenomenon, the time-dependent expression of behavioral, neurochemical, and neuroendocrine sensitization after a single exposure to amphetamine was investigated in rats. A single exposure to amphetamine (5 mg/kg, i.p.) caused context-independent sensitization of the locomotor effects of amphetamine, which intensified over time. Thus, sensitization to amphetamine was marginal at 3 d after treatment and more evident after 1 week, whereas 3 weeks after treatment, profound sensitization, as well as cross-sensitization, to cocaine was observed. Amphetamine pretreatment caused an increase in the electrically evoked release of [(3)H]dopamine from nucleus accumbens, caudate putamen, and medial prefrontal cortex slices and of [(14)C]acetylcholine from accumbens and caudate slices. The hyperreactivity of dopaminergic nerve terminals appeared to parallel the development of locomotor sensitization, i.e., whereas hyperreactivity of accumbens dopaminergic terminals increased between 3 d and 3 weeks after treatment, the hyperreactivity of medial prefrontal dopaminergic terminals decreased. Pre-exposure to amphetamine also sensitized the hypothalamus-pituitary-adrenal axis response to amphetamine at 1 and 3 weeks, but not at 3 d after treatment. Because these data closely resemble those reported previously for repeated amphetamine pretreatment, it is concluded that a single exposure to amphetamine is sufficient to induce long-term behavioral, neurochemical, and neuroendocrine sensitization in rats.
Intraperitoneal administration of the cytokine interleukin-1 (IL-1) induces brain-mediated sickness symptoms that can be blocked by subdiaphragmatic vagotomy. Intraperitoneal IL-1 also induces expression of the activation marker c-fos in vagal primary afferent neurons, suggesting that IL-1 is a key component of vagally mediated immune-to-brain communication.The cellular sources of IL-1 activating the vagus are unknown, but may reside in either blood or in the vagus nerve itself. We assayed IL-1 protein after intraperitoneal endotoxin [lipopolysaccharide (LPS)] injection in abdominal vagus nerve, using both an ELISA and immunohistochemistry, and in blood plasma using ELISA. IL-1 levels in abdominal vagus nerve increased by 45 min after LPS administration and were robust by 60 min. Plasma IL-1 levels increased by 60 min, whereas little IL-1 was detected in cervical vagus or sciatic nerve. IL-1-immunoreactivity (IR) was expressed in dendritic cells and macrophages within connective tissues associated with the abdominal vagus by 45 min after intraperitoneal LPS injection. By 60 min, some immune cells located within the nerve and vagal paraganglia also expressed IL-1-IR. Thus, intraperitoneal LPS induced IL-1 protein within the vagus in a time-frame consistent with signaling of immune activation. These results suggest a novel mechanism by which IL-1 may serve as a molecular link between the immune system and vagus nerve, and thus the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.