Protons with energies up to ~ 10 15 eV are the main component 1 of cosmic rays, but evidence for the specific locations where they could have been accelerated to these energies has been lacking 2 . Electrons are known to be accelerated to cosmic-ray energies in supernova remnants 3,4 , and the shock waves associated with such remnants, when they hit the surrounding interstellar medium, could also provide the energy to accelerate protons. The signature of such a process would be the decay of pions (π 0 ), which are generated when the protons collide with atoms and molecules in an interstellar cloud: pion decay results in γ-rays with a particular spectral-energy distribution 5,6 . Here we report the observation of cascade showers of optical photons resulting fromγ-rays at energies of ~ 10 12 eV hitting Earth's upper atmosphere, in the direction of the supernova remnant RX J1713.7-3946. The spectrum is a good match to that predicted by pion decay, and cannot be explained by other mechanisms.
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.