We demonstrate efficient resonant energy transfer from excitons confined in silicon nanocrystals to molecular oxygen (MO). Quenching of photoluminescence (PL) of silicon nanocrystals by MO physisorbed on their surface is found to be most efficient when the energy of excitons coincides with triplet-singlet splitting energy of oxygen molecules. The dependence of PL quenching efficiency on nanocrystal surface termination is consistent with short-range resonant electron exchange mechanism of energy transfer. A highly developed surface of silicon nanocrystal assemblies and a long radiative lifetime of excitons are favorable for achieving a high efficiency of this process.
We report the observation of the anisotropic linear polarization of porous Si photoluminescence measured in two excitation geometries. In the normal excitation geometry (exciting beam normal to the sample (100) surface) linear luminescence polarization of as much as 20% is seen parallel to the excitation polarization. In the edge excitation geometry (exciting light incident on a cleaved edge of the sample) the luminescence polarization is aligned mainly in the [100] direction (normal to the surface). The effect is described within the framework of a dielectric model in which porous Si is considered as an aggregate of slightly deformed, elongated and flattened, dielectric elliptical Si nanocrystals with preferred orientation in the [100] direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.