BackgroundColon cancer (CC) pathological staging fails to accurately predict recurrence, and to date, no gene expression signature has proven reliable for prognosis stratification in clinical practice, perhaps because CC is a heterogeneous disease. The aim of this study was to establish a comprehensive molecular classification of CC based on mRNA expression profile analyses.Methods and FindingsFresh-frozen primary tumor samples from a large multicenter cohort of 750 patients with stage I to IV CC who underwent surgery between 1987 and 2007 in seven centers were characterized for common DNA alterations, including BRAF, KRAS, and TP53 mutations, CpG island methylator phenotype, mismatch repair status, and chromosomal instability status, and were screened with whole genome and transcriptome arrays. 566 samples fulfilled RNA quality requirements. Unsupervised consensus hierarchical clustering applied to gene expression data from a discovery subset of 443 CC samples identified six molecular subtypes. These subtypes were associated with distinct clinicopathological characteristics, molecular alterations, specific enrichments of supervised gene expression signatures (stem cell phenotype–like, normal-like, serrated CC phenotype–like), and deregulated signaling pathways. Based on their main biological characteristics, we distinguished a deficient mismatch repair subtype, a KRAS mutant subtype, a cancer stem cell subtype, and three chromosomal instability subtypes, including one associated with down-regulated immune pathways, one with up-regulation of the Wnt pathway, and one displaying a normal-like gene expression profile. The classification was validated in the remaining 123 samples plus an independent set of 1,058 CC samples, including eight public datasets. Furthermore, prognosis was analyzed in the subset of stage II–III CC samples. The subtypes C4 and C6, but not the subtypes C1, C2, C3, and C5, were independently associated with shorter relapse-free survival, even after adjusting for age, sex, stage, and the emerging prognostic classifier Oncotype DX Colon Cancer Assay recurrence score (hazard ratio 1.5, 95% CI 1.1–2.1, p = 0.0097). However, a limitation of this study is that information on tumor grade and number of nodes examined was not available.ConclusionsWe describe the first, to our knowledge, robust transcriptome-based classification of CC that improves the current disease stratification based on clinicopathological variables and common DNA markers. The biological relevance of these subtypes is illustrated by significant differences in prognosis. This analysis provides possibilities for improving prognostic models and therapeutic strategies. In conclusion, we report a new classification of CC into six molecular subtypes that arise through distinct biological pathways. Please see later in the article for the Editors' Summary
Both the pre-apoptotic exposure of calreticulin (CRT) and the post-apoptotic release of high-mobility group box 1 protein (HMGB1) are required for immunogenic cell death elicited by anthracyclins. Here, we show that both oxaliplatin (OXP) and cisplatin (CDDP) were equally efficient in triggering HMGB1 release. However, OXP, but not CDDP, stimulates pre-apoptotic CRT exposure in a series of murine and human colon cancer cell lines. Subcutaneous injection of OXP-treated colorectal cancer (CRC), CT26, cells induced an anticancer immune response that was reduced by short interfering RNAmediated depletion of CRT or HMGB1. In contrast, CDDP-treated CT26 cells failed to induce anticancer immunity, unless recombinant CRT protein was absorbed into the cells. CT26 tumors implanted in immunocompetent mice responded to OXP treatment in vivo, and this therapeutic response was lost when CRT exposure by CT26 cells was inhibited or when CT26 cells were implanted in immunodeficient mice. The knockout of toll-like receptor 4 (TLR4), the receptor for HMGB1, also resulted in a deficient immune response against OXP-treated CT26 cells. In patients with advanced (stage IV, Duke D) CRC, who received an OXP-based chemotherapeutic regimen, the loss-of-function allele of TLR4 (Asp299Gly in linkage disequilibrium with Thr399Ile, reducing its affinity for HMGB1) was as prevalent as in the general population. However, patients carrying the TLR4 loss-of-function allele exhibited reduced progression-free and overall survival, as compared with patients carrying the normal TLR4 allele. In conclusion, OXP induces immunogenic death of CRC cells, and this effect determines its therapeutic efficacy in CRC patients.
In febrile neutropenic patients, systematic CT scan allows earlier diagnosis of IPA. Early antifungal treatment, combined with surgical resection if necessary, improves IPA prognosis dramatically in these patients.
In patients with neutropenia, CT halo sign is a highly effective modality for IPA diagnosis. The duration of the halo sign is short, and it demonstrates the value of early CT. The increase of the aspergillosis size on CT in the first days after IPA diagnosis is not correlated with a pejorative immediate outcome when using a combined medical-surgical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.